![]() |
Aaron Couture Aaron Couture is engaged in the experimental study of neutron capture by hook or by crook. Neutron capture is responsible for the production of almost all of the observed elements heavier than iron. Nuclear waste transmutation concepts rely on neutron capture to reduce long-lived radionuclide inventories. Nuclear forenics relies on understanding neutron reaction networks. Where possible, these reactions are measured directly with neutron beam facilities such as LANSCE at Los Alamos. These measurements are complemented by nuclear structure studies on rare isotope beams. This structure information is used to inform and guide nuclear reaction modeling use to predict neutron capture reaction rate predictions off stability. You can also download a poster on his research here: 'Nuclear Science at LANSCE'. |
![]() |
Shea Mosby Neutron-induced reactions play an important role in nuclear technology and national security fields such as stockpile stewardship. Physics quantities of interest include neutron-induced fission cross sections, the fission total kinetic energy release and fission fragment mass distributions. Mosby and his team are developing an instrumentation suite which, when combined with the neutron beams available at the Los Alamos Neutron Science Center, will provide next generation experimental constraints on these quantities. Neutron-induced reactions on short-lived nuclei are an additional area of interest which pose unique challenges and preclude many of the traditional experimental techniques. His work also includes investigating both indirect probes of the reaction mechanics and the feasibility of directly studies of neutron-induced reactions in inverse kinematics. You can also download a poster on his research here: 'Nuclear Science at LANSCE'. |