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OVERVIEW
» Compton camera imaging

– in astronomy, nuclear medicine, and
lately in homeland security screening
applications.

» Cone (or Compton) transform

– integrates a function (source intensity dis-
tribution) over conical surfaces.

» An inversion formula for the cone transform

– through a relation between cone and
Radon transforms.

INTRODUCTION
Conventional gamma cameras used in emission
tomography determine the direction of an incom-
ing γ-photon by "collimating” the detector (see
Fig. 1).

Figure 1: Collimation.

This technique leads to very low efficiency be-
cause only a small fraction of the radiation is
transmitted through the collimator [2]. Thus, the
acquired signal is weak and statistically noisy.
The situation is similar in astronomy and is even
more drastic for homeland security screening ap-
plications [1].
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COMPTON CAMERA
» Already used in astronomy as a telescope to de-

tect atmospheric or cosmic γ-ray sources
» Locate the source by Compton scattering prin-

ciple
» No mechanical collimation
» Dramatic increase in sensitivity
» Simultaneous multiple views of the object
» Two parallel detectors recording the position

and energy of the incoming photon.

– Compton scattering at the 1st detector,

– Absorption at the 2nd detector.

Figure 2: Compton Scattering.

» From the knowledge of β and the scattering an-
gle ψ, we conclude that the photon origi-
nated from the surface of the cone with cen-
tral axis direction β, vertex x1 and opening
angle ψ .

Figure 3: Compton Camera.

MATHEMATICAL MODEL
» f(x)-source intensity distribution function

» Compton camera data:

Integrals of f over conical surfaces having
vertex at the detector.

» The cone or Compton transform:

f(x) 7−→ Integral of f over conical surfaces
having vertex at the detector.

» Compton camera imaging

GOAL: Recover source distribution f .

CONE TRANSFORM
» Equation of a cone in Rn:

(x− u) · β = |x− u| cosψ.

» Parametrization:

(u, β, ψ) ∈ Rn × Sn−1 × [0, π].

» n-dimensional cone transform of f ∈ S(Rn):

Cf(u, β, ψ) =

∫
(x−u)·β=|x−u| cosψ

f(x)dx

dx-the surface measure on the cone.

INVERSION OF THE CONE TRANSFORM

Theorem ([3]): Let f ∈ S(Rn), u ∈ Rn and ω ∈ Sn−1. If n = 3,

Rf(ω, ω · u) =
1

2π2

∫
S2

π∫
0

Cf(u, β, ψ) sinψdψdβ − ∆S(∆S + 2)

4π2


∫
S2

π∫
0

Cf(u, β, ψ) log
1

|ω · β|
sinψdψdβ


and, if n = 2,

Rf(ω, ω · u) =
∆S + 1

2

∫ π

0

Cf(u, ω⊥, ψ) sinψdψ.

Here, ∆S is the Beltrami-Laplace operator on S2 acting on ω, andR denotes the Radon transform whose
inversion is well-known.
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RECONSTRUCTIONS (2D)
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Figure 4: Phantom Reconstruction

256x256 image reconstructed from the simulated
Compton data using 257 detectors per side and
200 counts for β and ψ each.


