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ABSTRACT INTRODUCTION NEURAL NETWORKS

The development of methods for source detection | | In order to detect emission sources, ideally one Deep learning is investigated as a path to source o o
in high noise environments is an important topic | | would try to reconstruct from the signal the | | detection with a shorter observation time and oo o [ COAE | o >
in single-photon emission computed tomography | | source distribution function. When the data | | without prior mathematical processing such as
(SPECT) medical imaging and homeland security | | (e.g., in SPECT) is sufficiently well behaved, backprojection. A two stage process is adopted for i T
applications. The detection of low emission nu- | | analytic reconstruction is possible using Compton | | this task detailed in the flow chart (Fig. 2 right).
clear sources in the presence of significant back- | | cameras [3]. However, when the signal of interest

ground noise (SNR < 0.01) is of great interest | | is embedded in a high noise environment, such e Detector data is taken as input. The output is 232 Max Pocing, 25% Dropot l l 232 Mex Pocing, 25% Dropot
since such a robust detection system can prevent | | as in the case of illicit nuclear source detection, "yes" if a source is detected and "no" otherwise.
the smuggling of weapons-grade nuclear mate- | | analytic reconstruction is impossible, although in . . N2 32 e X2 CoNVaD B4 e X2
rial. A source detection method based on the anal- | | this case one is mostly interested in the presence  Convolutional  Denoising Autoencod!er
ysis of data obtained from Compton type cameras | | of a source, rather than its exact location. (CDAE) suppresses the background noise

CONV2D 16 filters X2 CONV2D 32 filters X2

22 Max Pooling, 25% Dropout l l 2¢2 Max Pooling, 25% Dropout

and their analogs using deep learning is devel- | | In order to have any hope of detecting the small in the sign.al; trainefi by inputting noisy data
oped and evaluated, and compared to previous | | fluctuations in background noise produced by and targeting denoised data. FoNED B s X2 "¢ 256 Neurons
statistical detection techniques. the presence of a small signal, direction sensitive e Convolutional Neural Network (CNN) Clas- 22 Upsampig, 25% Dropost | l 50% Dropou

detectors are necessary. The following options for
obtaining directional sensitivity are available:

sifier determines if output of CDAE in-
dicates presence of a source; trained by

CONVZD 32 filters X2 FC 2 Neurons

COMPTON TYPE CAMERAS

in Uttin dEteCtOr data rOCeSSQd b the 2x2 Upsampling, 25% Dropout
The Compton camera is a new type of vy-particle | | Mechanical collimation - only rays incident along a C]ID) AT f((g)r which it is kn}())WH whe the}; the l
detector that provides a surface cone of possible certain line are allowed to reach the detector. This ,
incoming directions of a detected photon. In the effectively significantly reduces the signal strength and source 1s present. FonveD e

absence of mechanical collimation, signal strength thus becomes unsuitable for low signal to noise ratios.

is effectively maintained, although data analysis
becomes more complex.

Neutron detectors (albeit based upon a different
physics rather than Compton scattering) that pro-

Figure 2: Overview of neural network architecture

Compton type cameras - Novel type of gamma
and neutron detectors that determine a surface cone
of possible incident trajectories, rather than their exact
directions.

RESULTS

vide similar cone information are currently being Bkgnd Cnt | Sensitivity | Specificity Bkgnd Cnt | Sensitivity | Specificity
developed. Since the arising problems are mathe- 10000 960/.909 | .998/.644 10000 .06/.00 1.0/1.0
matically equivalent, we will not specity the type BACKPROJECTION TECHNIQUES 5000 949/.725 | .882/.528 5000 .06/.00 1.0/1.0
of particles detected. Previously Compton camera data was processed 2000 .732/.530 | .519/.510 2000 .02/.02 1.0/1.0
using backprojection techniques, wherein lines
are drawn over all possible incident trajectories Table 1: Neural Network Performance SNR 2% / 1% Table 2: Back Projection Performance SNR 2% / 1%

observed, and a source is determined to be present
if a statistically significant concentration of inter-

sections occurs in a localized area. This method | [SLOMNEILE I LQERY 7N @ 5 REFERENCES
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