Preparations for Measuring the Gamma Ray Strength Function of 60Fe using 59Fe(d,p)60Fe

Austin Abbott1,2, Maxwell Sorenson1,2, Alan B. McIntosh1, Eames Bennett1, Aaron Couture3, Jerome Gauthier1, Kris Hagel1, Ian Jeanis1,2, Shea Mosby3, Shuya Ota1, Chris Prokop3, Robert Varner4, Aditya Wakhle1, and Sherry J. Yennello1,2

1 Cyclotron Institute, Texas A&M University, College Station, Texas
2 Chemistry Department, Texas A&M University, College Station, Texas
3 Los Alamos National Laboratory, Los Alamos, New Mexico
4 Oak Ridge National Laboratory, Oak Ridge, Tennessee

Introduction

- 60Fe has been observed nearby in the galaxy [1], in lunar soil samples [2], in oceans worldwide [3], and in Antarctic snow [4]
- Important isotope in nucleosynthesis; branch point in the s-process
- We will measure the gamma ray strength function in order to obtain a constraint for astrophysical models
- 59Fe beam, produced using the TAMU MARS line at the Cyclotron Institute, impinging on a CD$_2$ target
- Proton emitted at backward angles from 59Fe(d,p)60Fe reaction will be detected in a silicon detector
- Gamma rays will be detected in packs of BaF$_2$ crystals coupled to photomultiplier tubes.

Experimental Setup

- CAD drawing of anticipated final experimental setup
- Coincidence of MCP and PPAC give TOF of residue
- Silicon rings give angular resolution for proton
- Purity detector for beam impurities event by event
- $\sim 10^5$ pps

Experimental Simulations

- 210Th alpha source and can achieve 53 keV (0.6%) resolution
- β^+ spectrum from 68Ge source
- γ cascade

Silicon Testing

- 24 rings and 32 pies
- Currently triggering on the fast out of rings
- Tested with 232Th alpha source and can achieve 53 keV (0.6%) resolution
- Coincidence with Si

BaF$_2$ Resolution Improvement

- Decoupled to try RTV
- Initially successful but found degradation over time and uniformity issues
- Recover fast component of signal when recoupled with oil
- Resolution still between 15-25%
- New PMTs increase resolution of one detector from 17.7% to 11.6%

Coming This Fall

- Measure 57Fe(d,p)58Fe reaction in order to characterize detector response
- Can check with known states of 57Fe

References

Acknowledgements

Special thanks to the Cyclotron Institute and the SJY group. This research is possible thanks to the NNSA Grant #DE-NA0003841, Robert A. Welch Foundation Grant #A-1266 and Department of Energy Grant #DE-FG03-93ER40773.