Preparations for Measuring the Gamma Ray Strength Function of ⁶⁰Fe using ⁵⁹Fe(d,p)⁶⁰Fe

Austin Abbott^{1,2}, Maxwell Sorenson^{1,2}, Alan B. McIntosh¹, Eames Bennett¹, Aaron Couture³, Jerome Gauthier¹, Kris Hagel¹, Ian Jeanis^{1,2}, Shea Mosby³, Shuya Ota¹, Chris Prokop³, Robert Varner⁴, Aditya Wakhle¹, and Sherry J. Yennello^{1,2}

Introduction

- ⁶⁰Fe has been observed nearby in the galaxy ^[1], in lunar soil samples ^[2], in oceans worldwide ^[3], and in Antarctic snow^[4]
- Important isotope in nucleosynthesis; branch point in the s-process
- We will measure the gamma ray strength function in order to obtain a constraint for astrophysical models
- ⁵⁹Fe beam, produced using the TAMU MARS line at the Cyclotron Institute, impinging on a CD₂ target
- Proton emitted at backward angles from ⁵⁹Fe(d,p)⁶⁰Fe reaction will be detected in a silicon detector
- Gamma rays will be detected in packs of BaF₂ crystals coupled to photomultiplier tubes.

Experimental Setup

CAD drawing of anticipated final experimental setup

- Coincidence of MCP and PPAC give TOF of residue
- Silicon rings give angular resolution for proton
- Purity detector for beam impurities event by event • ~10⁵ pps

TEXAS A&M UNIVERSITY Cyclotron Institute

¹ Cyclotron Institute, Texas A&M University, College Station, Texas ² Chemistry Department, Texas A&M University, College Station, Texas ³ Los Alamos National Laboratory, Los Alamos, New Mexico ⁴ Oak Ridge National Laboratory, Oak Ridge, Tennessee

BaF₂ Resolution Improvement

- Decoupled to try RTV
- Initially successful but found degradation over time and uniformity issues
- Recover fast component of signal when recoupled with
- Resolution still between 15-25%
- New PMTs increase resolution of one detector from 17.7% to 11.6%

Coming This Fall

- Measure ⁵⁷Fe(d,p)⁵⁸Fe reaction in order to characterize detector response
- Can check with known states of ⁵⁸Fe

References

- [1] R. Diehl. New Astronomy Reviews 50 (2006) 534-539 [2] L. Fimiani, *et al.* Phys. Rev. Lett. 116, 151104 (2016) [3] A. Wallner, et al. Nature 532 (2016) 69-72
- [4] D. Koll, et al. Phys. Rev. Lett. 123, 072701 (2019)

Acknowledgements

Special thanks to the Cyclotron Institute and the SJY group. This research is possible thanks to the NNSA Grant #DE-NA0003841, Robert A. Welsh Foundation Grant #A-1266 and Department of Energy Grant #DE-FG03-93ER40773.

