



What have we got, what will we have

## and how these tools impact NEUTRON DETECTION





SOUTHERN ILLINOIS UNIVERSITY

EDWARDSVILLE

scintillators



(Both configured for 32-channel operation, but only implemented 16(8) to save \$'s.)

Testing of new PSD to start soon, submit 16-ch CFD chip in July, new HINP 2019.

May 2018

## Present usage

| Institution  | Device        | ~ # of channels     |
|--------------|---------------|---------------------|
| HINP         |               |                     |
| MSU-WU-WMU   | HiRA Array    | > 2000              |
| ORNL-RUTGERS | S-ORUBBA      | ~ 2000              |
| LSU-FSU      | ANASEN        | ~ 1000 (lost track) |
| TAMU         | FAUST         | ~ 512               |
| RIKEN        | HI/p tracking | ~ 1000              |
| ND           | ??            | ~ hundred           |

3 technical & ~ 25 science papers have been published (by us) about & using HINP-16C.

### PSD

| LANL          | pointer survey meter | 16*       |
|---------------|----------------------|-----------|
| WU            | Scint Wall (DGS)     | 256 → 512 |
| FSU (perhaps) |                      |           |

### 3 technical papers + few science papers .... And\*

\* Perhaps coming to some "first-responders" near you.

#### **Technology and light-nuclei continuum spectroscopy papers**

| Technology:                                                                                                                           | <ul> <li>G. L. Engel et al., NIM A 573, 418 (2007).</li> <li>M. S. Wallace et al., NIM A 583, 302 (2007).</li> <li>G. L. Engel et al., NIM A 612, 161 (2009).</li> <li>G. L. Engel et al., NIM A 652, 462 (2011).</li> </ul>                         | HINP<br>HIRA<br>PSD improvements ported to HINP<br>HINP + PSD |  |
|---------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------|--|
| A = 5 ➔ ⁵H and ⁵Be                                                                                                                    | Wuosmaa et al., Phys. Rev. C 95, 014310 (2017); R. J. Charity et al. in preparation (2018).                                                                                                                                                          |                                                               |  |
| <sup>6</sup> Be:                                                                                                                      | L.V. Grigorenko et al., Phys. Lett. B 677, 30 (2009); L.V. Grigorenko et al., Phys. Rev. C 80, 034602 (2009).<br>I.A. Egorva et al., Phys. Rev. Lett. 109, 202502 (2012).                                                                            |                                                               |  |
| <sup>8</sup> C and <sup>8</sup> B <sub>IAS</sub> :<br>+ misc                                                                          | R. J. Charity et al., Phys. Rev. C <b>82</b> , 041304( <b>R</b> ) (2010); R. J. Charity et al., Phys. Rev. C <b>84</b> , 014320 (2011).<br><b>K. W. Brown</b> et al., Phys. Rev. C <b>90</b> , 027304 (2014).                                        |                                                               |  |
| AAS                                                                                                                                   | J. Okolowicz, M. Ploszajczak, R. J. Charity and L. G. Sobotka, Phys. Rev. C 97,044303 (2018).                                                                                                                                                        |                                                               |  |
| <sup>10</sup> C:                                                                                                                      | R. J. Charity et al., Phys. Rev. C <b>75</b> , 051304( <b>R</b> ) (2007); <b>K. Mercurio</b> et al., Phys. Rev. C <b>78</b> , 031602( <b>R</b> ) (2008), R. J. Charity et al., Phys. Rev. C <b>80</b> , 024306 (2009).                               |                                                               |  |
| <b>T = 5/2→</b> <sup>11</sup> Li, <sup>11</sup> Be, <sup>11</sup> B                                                                   | R.J. Charity et al., Phys. Rev. C 86, 041307 (R) (2012).                                                                                                                                                                                             |                                                               |  |
| <sup>12</sup> C (Hoyle)<br><sup>12</sup> O + <sup>12</sup> N <sub>IAS</sub><br><sup>11</sup> O + <sup>12</sup> O<br><sup>12</sup> Be: | J. Manfredi et al., Phys. Rev. C <b>85</b> , 037603 (2012).<br>M. Jager et al., Phys. Rev. C <b>86</b> , 011304 ( <b>R</b> ) (2012).<br>T. Webb et al., close to submission (2018).<br>R. J. Charity et al., Phys. Rev. C <b>76</b> , 064313 (2007). |                                                               |  |
| <sup>13</sup> O decay and <sup>12</sup> N (2-)                                                                                        | L. G. Sobotka et al., Phys. Rev. C 87, 054329 (2013).                                                                                                                                                                                                |                                                               |  |
| <sup>16</sup> Ne (3-body)                                                                                                             | K. W. Brown et al., Phys. Rev. Lett. 113, 232501 (2014), K. W. Brown et al., Phys. Rev. C 92, 034329 (2015).                                                                                                                                         |                                                               |  |
| <sup>17</sup> Na + ( <sup>8</sup> B, <sup>9</sup> B, <sup>9</sup> C, <sup>16</sup> F)                                                 | K. W. Brown et al., Phys. Rev. C 95, 044326 (2017).                                                                                                                                                                                                  |                                                               |  |
| <sup>17</sup> Ne (alignment +)                                                                                                        | R.J. Charity et al., Phys. Rev. C in press (2018).                                                                                                                                                                                                   |                                                               |  |
| Misc (inc. <sup>9</sup> Li*, <sup>10</sup> Be*):                                                                                      | R. J. Charity et al., Phys. Rev. C 78, 054307 (2008).                                                                                                                                                                                                |                                                               |  |
| Isospin symmetry breaking                                                                                                             | R. J. Charity et al., Phys. Rev. C. 84, 051308 (R) (2011).                                                                                                                                                                                           |                                                               |  |
| Alignment <sup>6</sup> Li, <sup>7</sup> Be:<br><sup>7</sup> Li                                                                        | R. J. Charity et al., Phys. Rev. C. <b>91</b> , 024610 (2015).<br>D.E.M. Hoff et al., Phys. Rev. Lett. <b>119</b> , 232501 (2017) <sup>.</sup> D.E.M Hoff et al. Phys Rev. C in press (2018)                                                         |                                                               |  |

## **Overview**

Have made several generations of both HINP (for Si) and PSD (for scintillators).



They work but we can do better!

- → New **PSD** has been FABed and we expect it in house very soon.
- → A 16-ch CFD has been designed and it will go out for FAB this summer.
- ➔ New HINP is being designed. Expect to be ready to submit by end of 2018.

### These will be the last (for my career) for these chips.

HINP will have better resolution, have lower power & be easier to use.
 PSD + CFD will make 1000+ch n detectors duck soup.

## Last HINP

**OBJECT:** Extend range and reduce thresholds present HINP design **CHANGES:** New Charge amp, dual (live) shapers, New peak detectors (CDS from BNL design), CFD has 10x added to LE, Differential off chip, ADC's on CB (250 MHz dig ALL – high, low, time - parallel) E<sub>high</sub> (100 MeV), E<sub>low</sub>, (400 MeV), T (2 or 4 us options) streams digitized in parallel on CB  $\rightarrow$  XLM-XXV Each XLM  $\rightarrow$  1000 ch (2000 ch if make 32-ch chip) **Two simultaneous gain ranges:** ~100 and ~400 MeV linear to ~ 75 % of ranges then compressive  $\rightarrow$  go to HIGHER than nominal range Thresholds: ~ 250 keV  $\sim$  50 keV (high gain)  $\sim$  100 keV (low gain) Resolution: Down side: This version does *not* allow the user to use an external CSA.

#### Errors on HINP-4.

- 1. Logical Required FPGA gymnastics to properly down load. (Seems to work phuu !)
  - → downloading slow (will be a few s/512 ch)
  - → Could influence time resolution on +ve polarity
- 2. We think a component in the peak sensor is undersized making some channels compressive.



# Energy Branch Block Diagram (much is new)



Digital delay block in zero-cross leg compensates for delay through x10 amplifier.

# **In service PSD-8C**

G.L. Engel, M.J. Hall, J.M. Proctor, J.M. Elson, L.G. Sobotka, R. Shane, R.J. Charity, Design and Performance of a Multi-Channel, Multi-Sampling, PSD-Enabling Integrated Circuit, *Nucl. Instru. Meth. A, 612, 161-170 (2009)* 



- 1. External CFD (32-ch CFD designed at WU CAMAC)
- 2. Three integration regions (A,B, and C) start and width user controlled
- 3. TVC circuit
- 4. Analog A, B, C (integrators) and T streams piped to **On CB ADC's**.
- 5. One VME XLM-XXV  $\rightarrow$  2 x 256 channels

# PSD -8C performance



Two tech. papers + two projects in the works. One of these is a DTRA (LANL) project using **CLYC** 

NEW PSD has simplified and improved time resolution, expect < 300 ps.</li>
 Will be compatible with 3.3 V FPGA's (CB 75% the component count.)
 Compatible with CFD ASIC.

# **CFD-16C** Simulated (designed for) liquid scint. to CsI(TI)



## Some of the considerable n-detector array efforts





RESONEUT

VANDLE

100

## Some interesting problems 1n, 2n, np + residue invariant mass spectroscopy.

### 1. <sup>8</sup>Li<sub>IAS</sub>

- Three-body photo disintegration of t (a two-neutron correlation experiment)
- 3. <sup>9</sup>Li E\* = 14.1 MeV why are there "tuned" resonances? This resonance is "tuned" to CP threshold BY open neutron channel.
- 4.  $^{26}O it$  is no accident that the 2-n separation energy is ~ ZERO
- 5. Correlations in <sup>8,10</sup>He\* decay. (<sup>5</sup>H likely not worth it.)
- 6. Decay of  ${}^{11}\text{Be}_{IAS}$  (analog of  ${}^{11}\text{Li}_{gs}$ ) n-p correlation

### Scintillators

## **Tools**

## Issues

Fast plastic Liquid (~BC-501A) p-terphenyl (and inorganic possibilities) EJ-276

### Light transducers

PMT's (glass or small metal) MA-PMT's SiPM's



- **1.** Resolution: time and pos → Size/vol. hurt
- 2. Efficiency: size vs layers → Size/volume help
- 3. 2n vs n-scattering differentiation Contiguous hurts Ability to stagger helps multi-anode PMT's hurt (x-talk, fix geo.)

4. Invariant mass (w fast beams) vs neutron spectra from stopped decay

| Signal | Processing |
|--------|------------|
|--------|------------|

|                                                                      | DSP                         | VS       | ASIC ("PSD+CFD")                |  |
|----------------------------------------------------------------------|-----------------------------|----------|---------------------------------|--|
| PSD                                                                  | best                        |          | good                            |  |
| Timing                                                               | probably best               |          | very good                       |  |
| Anal. Flexibility                                                    | can't be better             |          | Limiting but fine if            |  |
|                                                                      |                             | informa  | ation discrete (not continuous) |  |
| Cost                                                                 | likely prohibitive          | ch > 100 | not an issue Ch < 1000          |  |
|                                                                      | impacts transducer choices. |          |                                 |  |
| Size/power                                                           | not bad                     |          | suits itinerant exps            |  |
| Present exercise: "Poofing" (i.e. dreaming) unencumbered by ch count |                             |          |                                 |  |

Four concepts to follow (A-D) .... each interesting to think through.

### Concept A (modern Aaron)

ONE liquid volume optically separated into hundreds of "straws" each with square cross section



32 or 128 straws, read out on both ends

64 or 256 ch/block

#### **Realistic expectations**

10 mm x 300 mm "staws" 10 x 10 x ~25 mm boxcells 300 ps timing

Good compromise ... Use small normal end-on PTM on one end.

Inexpensive (Could make many such "blocks") The GOOD: timing and 2-D localization BAD : poor third dimension, Cannot stagger

#### **Concept B**

Modular with EJ-276 square, optically separated, square "straws" 10 mm x 10 mm cross section is a good compromise.



Idea: To promote internal reflection, surround by thin layer of PMMA (n=1.49) or water (1.33).

#### Concept C

"Fiber" EJ (a development project). This is for E\_n > 5 MeV (range of recoil ~ fiber width) Shares some qualities with Converting detectors. (In fact could add Fe layers.



The GREAT: 3-D localization The Good : timing The UGLY : High threshold

Straw straw-man detector: feed 8x8 (64) 0.25 mm fibers into one active PMT sector (or SiPM) X & Y by virtue of p-recoil range and delta's. position localization 2 x 2 x 2 mm,

# Concept D



Stack multiply layers PERHAPS with each X(Y) servicing two Y(X)'s.

Build up block 32 cm x 32 cm x 4 cm thick. Each such block 256-ch make several/many such "blocks"

The GOOD: Timing, **3-D** localization, can stagger, fabrication The BAD : Threshold likely not quite as low.

If the scint were small cubes (5x5x5 mm) of p-terphenyl, the "bad" moves to the "good"

Unfortunately....

We did NOT have the manpower to do simulations of these ideas Hopefully within CENTAUR we can compare and contrast.

The point is: IF we imagine large ch counts, there are possibilities not envisioned or at least built (as far as I know).

ASIC's are NOT the answer,

but having them allows for options that complement DSP.



SCINFUL 23: 40: 22 7-FEB-91

