Neutron Portal Monitor for Security Applications

Grigory Rogachev

Portal Monitors

- Gamma detection
- Thermal Neutron detection
- Fast Neutron detection

Highly Enriched Uranium (HEU) is a challenge: neutron flux is extremely low, γ-rays have low energy - easily shielded

Active neutron imaging scheme

M. Himel, et. al., Sci. Rep. 7, 7997 (2017)

General scheme

P - terphenyl (C₁₈H₁₄)

- Very bright 27,000 photons / MeVee
- Fast Decay time 3.7 ns
- Perfect pulse shape discrimination

PSD for p-terphenyl

Best PSD found was the use of Wavelet Analysis

"Mother Wavelet" (Ricker, etc.)

Best PSD found was the use of Wavelet Analysis

Power Spectrum vs Scale for 600 keV recoil neutron energy and gamma (gamma at same amplitude)

Scale a

PSD spectrum

PSD Figure of Merit

$$FOM = \frac{\mu_n - \mu_\gamma}{2.36(\sigma_n + \sigma_\gamma)}$$

AM

Double Hit Neutron Tracking

- Vertex localization for the first and second hit
- Time between the hits
- Energy deposited by the neutron

Double Hit Neutron Tracking

If several cones intersect a particular region of space, there is likely a source there.

MCNP Symulation

Intersecting cones reconstruction

- Associate a counter with every voxel
- Whenever a new cone intersects a given voxel, increase its count by one
- At the end, any voxels with a count much higher than the average are likely near a source
- The presence of a voxel with unusually high count tells us a source is present to begin with

Neural Network source recognition

of double hits per sample - 2,000 Training samples - 10,000 Test samples - 10,000

SNR	Accuracy
10%	99%
7%	96.2%
5%	93.5%
3%	84%

SiPM readout

- 4x5 matrix of 20 multiplexed Hamamatsu SiPMs
- Simple circuit with no active elements

SiPM readout

- Using the raw signal from the SiPMs
- The right plot shows one waveform from each band in the left plot

Acknowledgment

Cyclotron Institute: Eric Aboud Tony Ahn Josh Hooker Evgeniy Koshchiy

Dep. of Mathematics: Peter Kuchment Weston Baines

