

The CATRINA Deuterated Neutron Detector Array

Proton Beam

CATRINA neutron detector The array has been developed at Florida State University (FSU). CATRINA consists of 16deuterated-benzene (C_6D_6) liquid scintillators with high efficiency, pulse shape discrimination (PSD) capabilities and a novel pulseheight dependence (Fig.1) that, with time-of-flight (ToF), along extraction of neutron allows for energies [1,2]. The structure of the pulse-height spectrum is due to the anisotropic backscattering of d-n interactions unlike the isotropic nature of p-n, as shown in Fig. 2.

Introduction

<u>⁷Li(p,n)⁷Be</u>

Monitor

θ=40[°]

Flight Path

The ⁷Li(p,n)⁷Be reaction was measured to study the response of CATRiNA to mono-energetic neutrons using the FN-Tandem accelerator at the John D. Fox accelerator facility (Fig. 12) at FSU. A proton beam of several energies was used to bombard a LiF target. Quasi-mono-energetic neutrons from the ⁷Li(p,n₀)⁷Be

CATRINA Detectors

The CATRiNA detectors consist of C_6D_6 scintillating material (EJ-315) [3] contained in a 4" diameter x 2" deep cylinder coupled to a ET Enterprise 9821B PMT [4]. The PMT's anode pulse signal is sent to a MCFD which splits the pulse's timing and amplitude signal components. Two timing and amplitude signals from each detector are sent to independent banks on a MQCD (Fig. 4) for pulse integration. The C_6D_6 detectors are mounted on to a versatile array, where the detector's distance from target can be changed easily to optimize ToF.

reaction were identified via ToF (Fig. 15) and their pulse-shape dependence was compared.

In-Beam Experiments

Fig.3: One of CATRiNA detectors with (left) and without (right) mounting case.

<u>Tests with y/n Sources</u>

Fig.6: Pulse height signals from interactions of n/γ in the detectors. The different gate integration times are used for PSD.

(tip of the second seco

Fig.8: PSD parameters were optimized using a 252 Cf source. Here, the long-gate vs ratio short-gate/long-gate shows n/ γ separation. Fig.14:FOM with 250 KeVeeFig.15: Time-of-Flagthreshold.FOM ranged from 1.43neutrons from $(E_n = 2.3 \text{ MeV})$ to 1.36 $(E_n = 7.3 \text{ MeV})$ reaction.

Fig.15: Time-of-Flight spectra of neutrons from the ⁷Li(p,n) reaction.

Fig.16: Normalized QDC neutron spectra. The energy dependence of the pulse height is shown as a function of the neutron energy

¹²C(³He,n)¹⁴O

The ¹²C(³He,n)¹⁴O reaction was also studied at FSU using a 3.5 MeV/u bunched ³He beam. Preliminary results of the reaction are shown in Fig. 17, where several resonant states of ¹⁴O are observed.

Fig.17: ToF spectrum of the ${}^{12}C({}^{3}He,n){}^{14}O$ reaction.

Future Work

Measurement of the ¹⁴C(d,n) reaction for neutron spectroscopy studies

detector's QDC spectrum. [5]

Monte-Carlo Simulations

Fig.9: Simulated Compton Edges for 60 Co and 137 Cs γ -sources on C₆D₆ material using GEANT4.

Fig.10: Simulated efficiency curve of mono-energetic neutrons at different energies using GEANT4 and MCNP6's Tally and PTRAC.

Fig.11: Snapshot of the simulated C_6D_6 material in MCNPX VISED software.

Transition to a Digital DAQ

Coupling to γ-array & silicon detector
 for coincidence measurements

References

[1] V. Bildstein, P.E. Garrett, J. Wong, D. Bandyopadhyay,
J. Bangay, L. Bianco, NIM A 729 (2013) 188
[2] M. Febbraro, C.C. Lawrence, H. Zhu, B. Pierson, R.O
Torres-Isea, F.D. Becchetti, J.J. Kolata, J. Riggins, NIM A:
Volume 784, 2015, P. 184-188, ISSN 0168-9002,

[3]EljenTechnologyDeuteratedej315https://eljentechnology.com/products/liquid-scintillators/ej-315, Accessed:2018-08-15

[4] ET Enterprises Ltd Photomultipliers <u>http://www.et-enterprises.com/photomultipliers</u>, Accessed: 2018-08-15.
[5] W. Bo, Z. XueYing, C. Liang, Chinese Physics C Vol. 37 No.1 (2013) 010201

Acknowledgements

This work is partially supported by the Stewardship Science Academic Alliance through the Centaur Center of Excellence under Grant No. NA0003841.

