

Structure information on unstable, light nuclei is still not well known. We will be using single particle transfer reactions to investigate the structure of light neutron-deficient nuclei. We will then be able to test modern nuclear theories, including ab initio nuclear models and reaction theories, by comparing them with our data.

Reaction Studies:

- \circ d(⁸B,p)⁹B at MARS/TAMU using TexAT chamber
- \circ d(¹⁰C,t)⁹C at MARS/TAMU using TexAT chamber
- \circ ¹⁰B(³He, α)⁹B at FSU using Super-Enge Split-Pole Spectrograph
- \circ d(⁷Be,n)⁸B at FSU using RESONEUT
- During these studies, we will be able to learn about the structure of the ground states of radioactive beams. ¹⁰C is thought to have a cluster structure and ⁸B, along with ⁹C, are proton "halo" candidates.

ZN	3	4	5	6	
6	⁹ C.	10 C	11 C	12 C	Legend
					(d,t)
5	⁸ B	• ⁹ B♦	¹⁰ B	¹¹ B	(d,p)
4	⁷ Be	⁸ Be	⁹ Be	¹⁰ Be	(d,n)
	61 :	71 :	81 :	01 :	(³ He,α)
3	٥LI	'LI	°LI	⁹ LI	

Figure 1: The direct transfer reactions we are planning on performing are shown on a section of the chart of nuclides where stable elements are colored yellow, unbound systems are colored blue and nuclei that undergo beta decay are colored white.

Measurements

- Identify excited states and their widths.
- Determine angular distributions, which we can use to make assignments of spin and parity of the final nuclear state by comparing with reaction theory calculations.
- Calculate absolute cross sections, which will be used to obtain spectroscopic factors by comparing reaction model calculations to our experimental data.

References

- [1] J. J. Kroepfl and C. P. Browne, Nucl. Phys. A 108, 289 (1968). [2] A. Djaloeis, J. Bojowald, G. Paic, and B. Antolkovic, Proc. Int. Conf. on Nuclear Physics, Florence, Vol. 1, p. 235
- (1983).[3] K. Kadija, G. Paic, B. Antolkovic, A. Djaloeis, and J. Bojowald, Phys. Rev. C 36, 1269 (1987).
- [4] M. Burlein, et al., Phys. Rev. C 38 (1988) 2078.
- [5] N. Arena, Seb. Cavallaro, G. Fazio, G. Giardina, A. Italiano, and F. Mezzanares, Europhys. Lett. 5, 517 (1988). [6] M. A. Tiede, et al., Phys. Rev. C 52 (1995) 1315.
- [7] T. D. Baldwin, et al., Phys. Rev. C 86 (2012) 034330.
- [8] C. Wheldon, T. Kokalova, and M. Freer, Phys. Rev. C 91, (2015).

Studying Unstable Light Nuclei with **Transfer Reactions**

Rachel Malecek¹, Scott Marley¹, Yevgeniy Koshchiy², Tony Ahn², Grisha Rogachev² ¹Louisiana State University, Baton Rouge, LA, ²Texas A&M University, College Station, TX

Motivation

Studying the Structure of ⁹B

Over the years, there have been many studies to find the energy and width of the first-excited state of ⁹B, which is the mirror of the firstexcited state of ⁹Be ($J^{\pi} = \frac{1}{2^{+}}$, $E_x = 1.684 \pm 20$ MeV, $\Gamma = 214 \pm 5$ keV). However, this is a difficult state to populate and the results are varied (Table 1). By comparing the most current energy level diagrams of ⁹B and ⁹Be (Figure 2) we can see how much more information we have on the latter.

Figure 2: Comparing the energy level diagrams of ⁹B and its mirror nucleus ⁹Be. Energies and widths are in MeV, unless otherwise denoted, and are from the TUNL and NNDC Database.

Year	Author	E (MeV)	Γ (MeV)	Rea
1968	J. J. Kroepfl ^[1]	~1.6	0.7	¹⁰ B(
1983	A. Djaloeis ^[2]	1.65 ± 0.03	1 ± 0.2	⁹ Be
1987	K. Kadija ^[3]	1.16 ± 0.05	1.30 ± 0.05	⁹ Be
1988	M. Burlein ^[4]	1.32 ± 0.08	0.86 ± 0.26	⁹ Be(
1988	N. Arena ^[5]	1.8 ± 0.2	0.9 ± 0.3	¹⁰ B(
1995	T. D. Tiede ^[6]	0.73 ± 0.05	0.3 ± 0.05	⁶ Li
2012	M. A. Baldwin ^[7]	0.9 ± 0.1	~1.5	⁶ Li(⁶ I
2015	C. Wheldon ^[8]	1.85 ± 0.06	0.65 ± 0.125	⁹ B(³)

Table 1: A non-comprehensive summary of measurements of the first-excited state of ⁹B including the year of publication, its primary author, the reaction used and the resulting energy and width with uncertainties.

- The d(⁸B,p)⁹B study will be performed using the Momentum Achromat Recoil Spectrometer (MARS) (Figure 3) because it is capable of producing a ⁸B beam at higher energies (15-25 MeV/A) and intensities ($>10^4$ ions/s).
- We will expand on the current Texas Active Target (TexAT) chamber to house detectors able to detect and identify light ion decay products (Figure 4).
- The $d({}^{10}C,t){}^9C$ study will use a similar layout at this facility.

Figure 4: Both of the above images show the proposed chamber design while the one on the left depicts the specifics of our detector layout.

Experiments at FSU

- The ${}^{10}B({}^{3}He,\alpha){}^{9}B$ study will be investigated using the new Super-Enge Split Pole Spectrograph (SE-SPS), circled in red on Figure 5 of the FSU facility. A closer look at SE-SPS is shown in Figure 6.

Figure 6: Photo of SPS at FSU with key components labeled.

2.47 ⁵He + α

1.67 ⁸Be + n

action ³He, α) $(^{3}\text{He,t})$ $(^{3}\text{He,t})$ ⁶Li,⁶He) ³He, α) i(⁶Li,t) $(i,d)^{10}B^*$

He,t)⁹B

Experiments at TAMU

Momentum Achromat Recoil Spectrometer

Scale (meters)

Figure 3: Layout of the MARS facility at Texas A&M.

• The d(⁷Be,n)⁸B study will be developed using existing neutron detector systems (i.e. RESONEUT).