Toward the Development of a Next Generation Fast Neutron Portal Monitor

TEXAS A&M UNIVERSIT`

Cyclotron Institute

E. Aboud,¹ G.V. Rogachev,¹ C. Parker, ¹ D. Scriven, ¹ G. Christian, ¹ S. Ahn,¹ P. Kuchment,² E. Koshchiy,¹ J. Hooker,¹ W. Baines², LG. Sobotka,³ A. Thomas,³ S. Ota¹, and V.E. Johnson⁴

¹Cyclotron Institute, Texas A&M University, College Station, TX 77843 USA ²Department of Mathematics, Texas A&M University, College Station, TX 77843 USA ³Departments of Chemistry and Physics, Washington University, St. Louis, MO 63130 USA ⁴Department of Statistics, Texas A&M University, College Station, TX 77843 USA

BACKGROUND:

 Current methods for portal monitoring primarily rely on thermalization and counting techniques which can require

STATISTICAL ANALYSIS:

- The Uniformly Most Powerful Bayesian Tests (UMPBT) method [4] was used to estimate the sensitivity limitations for our detector.
- With simulation data of the ambient neutron background we can use the UMPBT method to estimate a sensitivity threshold with respect to time and number of neutrons emitted from the source.

expensive materials such as ³He. Techniques have been developed to challenge the limitations of these detectors in the past [1], but still require complex detection systems. By designing a multi-crystal 3D position sensitive apparatus we can distinguish ambient background neutrons and source neutrons as well as localize the source, similar to the concept of the Gamma-Ray Burst Monitor[2].

MCNP6 SIMULATIONS:

• Using MCNP6 [3] we can accurately

Figure: Time vs. Neutrons Emitted from Source plot that uses the UMPBT method to approximate the sensitivity threshold of our detector apparatus, assuming ideal conditions.

model neutron scattering in our detector

array.

 MCNP6 has been used to simulate a realistic ambient neutron background and a Watt fission spectrum for ²³⁵U+n with varying source strengths.

Wavelength Shifters (EJ-282)

-2.5cmx2.5cmx2.5cm Para-Terphenyl (C18H14) scintillators -Total detector size: 50cmx50cmx25cm