

CENTAUR Neutron Detector Workshop May 11, 2018

Primary Goal (Broadly Defined)

- Combine the Texas Active Target (TexAT) w/ largearea neutron array for decay & reaction studies in "complete kinematics"
- Targeted experiments
 - Decay spectroscopy of n-rich nuclei
 - (d,n) measurements
- Other potential applications
 - β -delayed neutrons
 - HI collisions
 - etc...

Texas A&M Cyclotron Institute

Projected Beam Intensities

a) Neutron Rich Products

Isotope	Energy Range	Intensity
	MeV/u	pps
⁹ Li	13-45	1.7-3.4×10 ⁶
¹¹ Li (8.6ms)	9-35	0.4-0.8×10 ⁴
¹² Be	16-45	2.7-5.5×10 ⁶
¹⁴ Be(4ms)	12-40	0.4-0.8×10 ⁴
³⁸ S	9-36	2.5-5.0×10 ⁵
⁴⁰ S	8-32	0.5-1.0×10 ⁵
⁴² S	7-29	1.8-3.6×10 ³
⁴⁴ S	7-26	0.9-1.8×10 ²
⁴² Ar	9-39	3.3-6.6×10 ⁵
⁴⁴ Ar	7-38	0.9-1.8×10 ⁵
⁴⁶ Ar	6-35	1.8-3.6×10 ⁴
⁴⁸ Ar	6-32	0.9-1.8×10 ²
⁶² Fe	13-38	1.9-3.8×10 ⁴
⁶⁰ Cr	10-32	0.5-1.0×10 ³

- Transfer + decay studies feasible for dripline nuclei w/ Z < 5.
- Extend program to FRIB + RIA12 for heavier masses (Z ~ 8)??

Neutron Array – Requirements

Primary

- TOF resolution
- Position resolution
- Efficiency

Secondary

- Brightness (pulse height resolution)
- n-γ discrimination

p-Terphenyl (Proteus, Inc.)

The Good

- Fast timing plastic
- PSD down to keV thresholds
- Brightness (27,000 photons/MeV!)

The Bad

- Limited fabrication geometries
 - Cylindrical (max: 5 cm x 10 cm)
- Cost (\$2k/cylinder)
- Limited (slow) production capability

Silicon Photomultipliers (SiPMs)

- Small footprint (compact array, less dark scattering)
- Operation in magnetic fields
- Pixlelation \rightarrow sub-cell position determination
- Low cost (~\$25/pixel in large volumes)

Sens-L ArrayJ 60034-64p (8x8 array of 6 mm pixels)

Position Resolution

- Better determination of flight path → energy resolution from TOF
- Determination of opening angle for complete neutron momentum (invariant mass)
- 1n vs. 2n discrimination (more later)
- Methods to improve
 - Smaller detectors
 - Readout methods w/ good sub-cell sensitivity

Light Sharing with SiPM Arrays

- Analyze centroid (x/y) and width (z) of distribution of light intensity on SiPM array
- Similar methods widely employed for PET (w/ inorganic scintillators)
- Brightness of p-Terphenyl may be essential for this to work

Light Sharing with SiPM Arrays

- Analyze centroid (x/y) and width (z) of distribution of light intensity on SiPM array
- Similar methods widely employed for PET (w/ inorganic scintillators)
- Brightness of p-Terphenyl may be essential for this to work

One vs. two neutron discrimination

- Significant problem for 2n measurements with closepacked arrays
- Traditional methods kinematic causality cuts
- Better pixilation → use tracking algorithms to distinguish?
- Machine learning?
 - Simulation work indicates boosted decision trees (BDT) can be very effective.
 - 95% efficiency for real 2n events, 5% 1n contamination
 - Possibility to try w/ existing data sets?

Where are we now?

- Early stages... noise a major issue
- Beginning work on designing noise filters, bias stabilizers etc. (lots of good documentation & advice from Sens-L)
- But no need to re-invent the wheel – suggestions / advice / collaboration from those who have been here already are most welcome.

