Fast Neutron Spectroscopy with C⁷LYC Scintillators

Partha Chowdhury University of Massachusetts Lowell

Work supported by U.S. Department of Energy

Cs₂LiYCl₆ (CLYC): novel dual n-γ scintillator

Neutron Detector Workshop- TAMU

May 11, 2018

Learning with Purpose

Chowdhury

Cs₂LiYCl₆ (CLYC): fast neutron response

Learning with Purpose

Chowdhury

Neutron Detector Workshop- TAMU

Cs₂LiYCl₆ (CLYC): fast neutron response

SCANS : Small C⁷LYC Array for Neutron Spectrocopy

- Eliminate ⁶Li(n, α) thermal peak via ⁷Li-enriched C⁷LYC
- Explore fast neutron spectroscopy potential (NNSA grants)
- A 16-element array of 1" x 1" C⁷LYC (largest crystals available at the time)

VME Struck Digitizers • 16 Ch – 250 MS/s • 14 bit ADC • n/γ firmware

- •~10% neutron pulse height resolution !!
- No long ToF arm needed
- Geometrical efficiency can be
 - enhanced by placing close to target
- Nuclear science with SCANS (C⁷LYC)
- Elastic/inelastic neutron scattering at Los Alamos
- Beta-delayed neutron spectroscopy at CARIBU

Learning with Purpose

Chowdhury

Neutron Detector Workshop- TAMU

⁵⁶Fe(n,n') SCANS at LANSCE

- 100 MeV pulsed protons on W spallation target
- 20 m flight path to scattering target (Fe)
- C⁷LYC detectors 17 cm from target
- TOF to detector provides incident energy
- Pulse height in C⁷LYC provides scattered energy

⁵⁶Fe(n,n') SCANS at LANSCE

Learning with Purpose

Chowdhury

Neutron Detector Workshop- TAMU

⁵⁶Fe(n,n') SCANS at LANSCE

May 11, 2018

100 keV slices on incident neutron energy ⁵⁶Fe(n,n') at LANSCE

Learning with Purpose

Chowdhury

Neutron Detector Workshop- TAMU

⁵⁶Fe elastic/inelastic relative cross-sections

UMASS

May 11, 2018

Learning with Purpose

Chowdhury

Efficiency estimates & ³⁵Cl(n,p) cross-sections

Learning with Purpose

Chowdhury

Neutron Detector Workshop- TAMU

the first 3" x 3" C⁷LYC

May 11, 2018

Learning with Purpose

Chowdhury

the first 3" x 3" C⁷LYC

May 11, 2018

Learning with Purpose

Chowdhury

UMass Lowell Radiation Laboratory: Facilities

1 MW research reactor

open pool; LEU fuel; 3 horizontal beam ports; in-core sample (~10¹³ n/cm²/s); thermal column (~10⁶ n/cm²/s); digital neutron radiography hot cell with remote manipulators

p, d, α beams; 100 μA DC beam; Mobley buncher; sub-ns pulsing; mono-energetic pulsed neutrons via ⁷Li(p,n); neutron beam line: proton microprobe; scattering chamber

CN

single

ended

Graaff

5.5 MV Van de

Learning with Purpose

Chowdhury

Neutron Detector Workshop- TAMU

C⁷LYC measurements at UMass Lowell

Directly measure C⁷LYC efficiency at accelerator
Mono-energetic neutrons via ⁷Li(p,n)⁷Be
Neutron production rate via ⁷Be assay (52-day half-life)
One ⁷Be per neutron, 10% β-decay branch, 479-keV γ-ray

Learning with Purpose

Chowdhury

Neutron Detector Workshop- TAMU

 $E_n = 1 \text{ MeV}$

 $E_{n} = 0.5 \text{ MeV}$

 $E_{n} = 0.25 \text{ MeV}$

Learning with Purpose

Chowdhury

Neutron Detector Workshop- TAMU

β -delayed neutron emitters at CARIBU

 $^{94}\text{Rb} \rightarrow ^{94}\text{Sr}$

CLYC results inconclusive, to be repeated in new lowbackground CARIBU hall

Learning with Purpose

Chowdhury

Neutron Detector Workshop- TAMU

machine learning n- γ discrimination

- n/γ PSD a binary classification problem
- Common target of machine learning algorithms
- Artificial neural networks promising for n/γ PSD in liquid scintillators
- "Supervised learning" requires pre-classified training data
- Feed forward neural network
- Interconnected "hidden" layers of 'artificial neurons'
- Each neuron has many inputs x_i and one output z
- The output is a weighted sum of its inputs
- Passed through an 'activation function' f

$$z = f\left(\sum_{i=1}^{N} w_i x_i\right)$$

Learning with Purpose

Chowdhury

Neutron Detector Workshop- TAMU

machine learning n- γ discrimination

- Trace presented to network as inputs
- Passed through a single hidden layer
- Activation function tanh x
- Vary weights and biases of each neuron
- Maximize accuracy over training data
- Output of ANN 1 or 0 (n or γ)

- ~500 lines of Python and C++, classifier is in Python, using Keras
- Keras wrapper around Tensorflow machine learning library
- Optimization algorithm is 'stochastic gradient descent'
- 544 inputs, 544 neuron hidden layer, 1 neuron output layer
- Training data: 20k γ and 20k neutrons between 1.5 and 5 MeV
- One complete optimization pass over training data --'epoch'
- For the datasets and networks used, each epoch took 3-4s

ANN: Supervised Learning

Learning with Purpose

Chowdhury

Neutron Detector Workshop- TAMU

Unsupervised learning: K-means clustering

- Cluster analysis algorithms do not require pre-classified training data
- C⁺⁺ implementation of *kmeans⁺⁺* algorithm
- K=2 for n/γ discrimination
- Perpendicular distance from hyperplane between centroids provides separation
- Training data set had ~28K neutrons and ~1.5M gamma rays

K-means Clustering: Unsupervised learning

Machine learning algorithms capable of separating neutrons and gamma-rays in CLYC scintillators in the energy range investigated

May 11, 2018

Learning with Purpose

machine learning n- γ discrimination

Machine learning algorithms capable of separating neutrons and gammarays in CLYC scintillators in the energy range investigated

WORK IN PROGRESS!!

 n/γ discrimination at energies < 1 MeV needs improvement

Learning with Purpose

Chowdhury

Summary

- C⁷LYC: emerging scintillator for fast neutron spectroscopy
- Right energy window for β -delayed and fission neutrons
- LANL ⁵⁶Fe(n,n') proof-of-principle experiment a success
- Efficiency and low energy response at UML Van de Graaff
- ³⁵Cl(n,p) cross-sections awaited for MCNPX simulations
- β-delayed neutron emitters at CARIBU
- Machine learning n-γ discrimination
- Auxiliary detector candidate for FRIB decay station?

Work supported by U.S. Department of Energy NNSA-SSAP Grant DE-NA0002932 and Office of Science Grant DE-FG02-94ER40848

May 11, 2018

UMass Lowell collaborators

Undergrads Thomas Harrington Michael D'Eon

Graduate students Tristan Brown Emery Doucet Nathan D'Olympia Emily Jackson Patrick Copp *Post-docs* A.J. Mitchell Gemma Wilson Chris Morse Edward Lamere

Faculty Kim Lister Andrew Rogers Peter Bender

Thank you for your attention!

Learning with Purpose

Chowdhury