Exploring High-Spin States in ³⁹Ar using a Fusion-Evaporation Reaction

B. Abromeit, S. L. Tabor, Vandana Tripathi, R. S. Lubna, K.Kravvaris, E. Rubino, A. Volya

Department of Physics, Florida State University, Tallahassee, FL 32306, USA

Motivation

Intruder States: Excited states that arise when particles cross a shell gap

Standard shell model of ³⁹Ar in ground state

To the **left** is the standard configuration of protons and neutrons in the ground state of ³⁹Ar.

- A state's spin parity, J^{π} , is determined by the coupling of protons, π , and neutrons, ν , in the various particle shells.
- Ground state comes from

John D. Fox Superconducting Linear Accelerator Laboratory

Experimental Details: Ran for approximately 7 days using a Tandem Van de Graaff accelerator

- Used ¹⁴C beam with an energy of 25.6 MeV
- Used self-supporting, 100 µg/cm² ²⁷Al target
- <u>Gamma Spectroscopy Array</u>: Consisting of 3 Compton-suppressed HpGe clover detectors and 7 HpGe single crystal detectors at angles 90°, 35°, and 145°
- Utilized a particle telescope, made from two silicon detectors (100µm

uncoupled neutron in $1f_{7/2}$ shell

Standard shell model of ³⁹Ar in an excited state

- The new state created by promoting a $1d_{3/2}$ proton into the $1f_{7/2}$ shell gives a new energy level with a J^{π} of $17/2^+$.
- **Importance:** this state is an *intruder state*, which are useful when helping to adjust/create theory models that are applicable for *all* isotopes
- Compound nucleus: ⁴¹K
- Decay channel selected: proton-neutron

A particle ID chart was created, as seen to the **right**, by taking the energy relationship between the E detector and dE detector in the particle telescope

PID allows to select all events that occur with the decay through proton-neutron channel

and 1000µm thicknesses), placed at 0° [1]

Total energy deposited in E detector

After selecting events that occur in coincidence with the proton-neutron decay channel, a partial level scheme for ³⁹Ar could be created using gamma-gamma coincidences.

- Observe the gamma rays that are in coincidence with another gamma ray(s), taken from a specific cut on the data
- If in true coincidence, making a "reverse" cut on the new gamma ray will show the original gamma ray and possibly other gamma rays.
- coincidence.

[11] W.A.Sterrenburg et al., Nuc Phys A Vol 306, Iss 1-2,14-21, 157-172 (1978) [12] R.S.Lubna, FSU Shell Model Interaction – Private Communication

[9] H.Nann et al., Phys Rev C **15**, 1959 (1977) [10] J.F.Tonn et al., Phys Rev C 16, 2065(R) (1977)

[8] William C. Corwin et al., Phys Rev C **15**, 505 (1977)

