Motivation

Intruder States: Excited states that arise when particles cross a shell gap

Standard shell model of 39Ar in ground state

- To the left is the standard configuration of protons and neutrons in the ground state of 39Ar.
- A state's spin parity, J^p, is determined by the coupling of protons, x, and neutrons, v, in the various particle shells.
- Ground state comes from uncoupled neutron in 1f$_{7/2}$ shell

Standard shell model of 39Ar in an excited state

- The new state created by promoting a 1d$_{5/2}$ proton into the 1f$_{7/2}$ shell gives a new energy level with a J^p of 17/2$^+$.

Importance:
- This state is an intruder state, which are useful when helping to adjust/create theory models that are applicable for all isotopes

John D. Fox Superconducting Linear Accelerator Laboratory

Experimental Details: Ran for approximately 7 days using a Tandem Van de Graaff accelerator

- Used 14C beam with an energy of 25.6 MeV
- Used self-supporting, 100 µg/cm2 27Al target
- **Gamma Spectroscopy Array:** Consisting of 3 Compton-suppressed HpGe clover detectors and 7 HpGe single crystal detectors at angles 90°, 35°, and 145°
- Utilized a particle telescope, made from two silicon detectors (100µm and 1000µm thicknesses), placed at 0° [1]

Correlation Chart

- Compound nucleus: 44K
- Decay channel selected: proton-neutron

A particle ID chart was created, as seen to the right, by taking the energy relationship between the E detector and D detector in the particle telescope
- PID allows to select all events that occur with the decay through proton-neutron channel

Preliminary Analysis and Results

After selecting events that occur in coincidence with the proton-neutron decay channel, a partial level scheme for 39Ar could be created using gamma-gamma coincidences.

Determining γ-γ Coincidences:

- Observe the gamma rays that are in coincidence with another gamma ray(s), taken from a specific cut on the data
- If in true coincidence, making a "reverse" cut on the new gamma ray will show the original gamma ray and possibly other gamma rays.
- If there is no evidence of the original gamma ray, the coincidence is a random coincidence.

Legend:

- **Black:** Previously measured gamma transition
- **Red:** New gamma transition
- **Blue:** Contamination
- **Green:** Electron annihilation

Below and above are a few examples of γ-γ coincidences that were used to build the level scheme

Theory

At FSU, we are in the process of developing a new interaction that will better predict intruder states for excitations across the n = 20 shell gap [12]. Above is the comparison of the FSU interaction predictions to the experimental results for 39Ar.

Legend:

- **Red:** negative parity theory states
- **Blue:** positive parity theory states

References

The Future

Further comparison and development of the FSU shell model interaction will be conducted in order to help predict the J^p of the newly discovered states. Because of the nature of the reaction and the J^p of the previously known transitions, it is suspected that these new states will have high spin. Fitting an interaction to these new states will help build an interaction that is applicable for other isotopes that might also have intruder states.

Acknowledgements

This material is based upon work supported by the U. S. National Science Foundation under Grants No. PHY 14-01574 and PHY 17-12953. Supported in part by the Stewardship Science Academic Alliance through the Center for Excellence under Grant No. NAO003841.