TRANSFER REACTIONS ACROSS THE Z=16 CHAIN

Calem R. Hoffman - Argonne National Laboratory
Anthony N. Kuchera - Davidson College
FSU, March 14-15, 2024

BRIEF OUTLINE

+ Proposed measurements
+ Motivation
+ On-going / complementary program

CORRELATIONS THROUGHOUT THE N=18-20-22 ISOTONES

Supplement available data with new \& deeper pair transfer information

$$
34,36 \mathrm{~S}(\mathrm{t}, \mathrm{p})^{36,38 \mathrm{~S}} \text { at } \sim 6 \mathrm{MeV} / \mathrm{u}
$$

Motivation

- Only $0^{+}{ }_{1}$-> $0^{+}+1$ data available for ${ }^{34} \mathrm{~S}->36 \mathrm{~S}$
- Systematics of $0{ }^{+}{ }_{1} / 0^{+}{ }_{i}$ cross sections [$0+{ }_{1} / 2+{ }_{1}$]
- Disentangle (fp) ${ }^{2}$ components
- Complements an inverse kinematics reaction planned at HELIOS
- Lack of definitive info in ${ }^{38}$ S levels

SE-SPS [+ CeBrA]

- Dedicated run for angular distributions
- Ep > 20 MeV
- Complementary run with γ-ray detection if possible

Targets

- 34S Available from CATS [~90/10 A = 34/32] ~10's ug/cm2
- Used at SE-SPS for previous ${ }^{34}$ S $(d, p[\gamma])^{35}$ S measurement
- New ${ }^{36}$ S from CATS [AgS - 88\% enriched] 10's ug/cm2

CORRELATIONS ACROSS N=18-20-22 ISOTONES

Supplement available data with new \& deeper pair transfer information

- Ar(t,p) - complete data sets available at 6.67 MeV/u - thorough interpretations
- S(t,p)
- missing excited level population into ${ }^{36}$ S
- $6 \mathrm{MeV} / \mathrm{u}{ }^{36 S}(\mathrm{t}, \mathrm{p})$ but ambiguous info in 38 S around $4-5.5 \mathrm{MeV}$
- $\operatorname{Si}(\mathrm{t}, \mathrm{p})$
- $32 \mathrm{Si}(\mathrm{t}, \mathrm{p})$ completed at ReA w/ SOLARIS
- $34 \mathrm{Si}(\mathrm{t}, \mathrm{p})$ future rare-isotope measurement

physics Lettres
0^{+}STATES NEAR THE $n=20$ NEUTRON SHELL FROM Ar(t, p) REACTIONS ${ }^{\star}$

 $\xrightarrow{\substack{\text { and } \\ \text { O. HANSEN }}}$

[^0]THE (t , p) REACTION ON ${ }^{36,38,40} \mathrm{Ar}$

CORRELATIONS ACROSS N=18-20-22 ISOTONES

Supplement available data with new \& deeper pair transfer information

- $\operatorname{Ar}(\mathrm{t}, \mathrm{p})$ - complete data sets available at 6.67 MeV/u - thorough interpretations
- $S(t, p)$
- missing excited level population into ${ }^{36}$ S
- $6 \mathrm{MeV} / \mathrm{u}{ }^{36 S}(\mathrm{t}, \mathrm{p})$ but ambiguous info in 38 S around $4-5.5 \mathrm{MeV}$
- $\operatorname{Si}(\mathrm{t}, \mathrm{p})$
- $32 \mathrm{Si}(\mathrm{t}, \mathrm{p})$ completed at ReA w/ SOLARIS
- $34 \mathrm{Si}(\mathrm{t}, \mathrm{p})$ future rare-isotope measurement

SYSTEMATICS OF GROUND.STATE (t.p) CROSS SECTION IN THE 2s-1d SHELL

Fortune et al., PLB (1979)

CORRELATIONS ACROSS N=18-20-22 ISOTONES

Supplement available data with new \& deeper pair transfer information

- $\operatorname{Ar}(t, p)$ - complete data sets available at 6.67 MeV/u - thorough interpretations
- $S(t, p)$
- missing excited level population into 36 S
- $6 \mathrm{MeV} / \mathrm{u}{ }^{36 S}(\mathrm{t}, \mathrm{p})$ but ambiguous info in 38 S around $4-5.5 \mathrm{MeV}$
- $\operatorname{Si}(\mathrm{t}, \mathrm{p})$
- 32Si(t,p) completed at ReA w/ SOLARIS
- $34 \mathrm{Si}(\mathrm{t}, \mathrm{p})$ future rare-isotope measurement

States of ${ }^{38} \mathrm{~S}$ from the ${ }^{36} \mathrm{~S}(\mathrm{t}, \mathrm{p})^{38} \mathrm{~S}$ reaction

CORRELATIONS ACROSS N=18-20-22 ISOTONES

Supplement available data with new \& deeper pair transfer information

- $\operatorname{Ar}(\mathrm{t}, \mathrm{p})$ - complete data sets available at 6.67 MeV/u - thorough interpretations
- $S(t, p)$
- missing excited level population into 36 S
- $6 \mathrm{MeV} / \mathrm{u}{ }^{36 S}(\mathrm{t}, \mathrm{p})$ but ambiguous info in 38 S around $4-5.5 \mathrm{MeV}$
- $\operatorname{Si}(\mathrm{t}, \mathrm{p})$
- $32 \mathrm{Si}(\mathrm{t}, \mathrm{p})$ completed at ReA w/ SOLARIS
- $34 \mathrm{Si}(\mathrm{t}, \mathrm{p})$ future rare-isotope measurement

CORRELATIONS ACROSS N=18-20-22 ISOTONES

Supplement available data with new \& deeper pair transfer information

- $\operatorname{Ar}(\mathrm{t}, \mathrm{p})$ - complete data sets available at 6.67 MeV/u - thorough interpretations
- $S(t, p)$
- missing excited level population into 36 S
- $6 \mathrm{MeV} / \mathrm{u}{ }^{36 S}(\mathrm{t}, \mathrm{p})$ but ambiguous info in 38 S around $4-5.5 \mathrm{MeV}$
- $\operatorname{Si}(\mathrm{t}, \mathrm{p})$
- $32 \mathrm{Si}(\mathrm{t}, \mathrm{p})$ completed at ReA w/ SOLARIS
- $34 \mathrm{Si}(\mathrm{t}, \mathrm{p})$ future rare-isotope measurement

CORRELATIONS THROUGHOUT THE N=18-20-22 ISOTONES

Supplement available data with new \& deeper pair transfer information

$$
34,36 \mathrm{~S}(\mathrm{t}, \mathrm{p})^{36,38 \mathrm{~S}} \text { at } \sim 6 \mathrm{MeV} / \mathrm{u}
$$

Motivation

- Only $0^{+}{ }_{1}$-> $0^{+}+1$ data available for ${ }^{34} \mathrm{~S}->36 \mathrm{~S}$
- Systematics of $0{ }^{+}{ }_{1} / 0^{+}{ }_{i}$ cross sections [$0+{ }_{1} / 2+{ }_{1}$]
- Disentangle (fp) ${ }^{2}$ components
- Complements an inverse kinematics reaction planned at HELIOS
- Lack of definitive info in ${ }^{38}$ S levels

SE-SPS [+ CeBrA]

- Dedicated run for angular distributions
- Ep > 20 MeV
- Complementary run with γ-ray detection if possible

Targets

- 34S Available from CATS [~90/10 A = 34/32] ~10's ug/cm2
- Used at SE-SPS for previous ${ }^{34}$ S $(d, p[\gamma])^{35}$ S measurement
- New ${ }^{36}$ S from CATS [AgS - 88\% enriched] 10's ug/cm2

DESCRIPTION OF EVOLVING SINGLE-PARTICLE ENERGIES

Influx of data: radioactive beam era + enhanced equipment + techniques

DESCRIPTION OF EVOLVING SINGLE-PARTICLE ENERGIES

Influx of data: radioactive beam era + enhanced equipment + techniques

DESCRIPTION OF EVOLVING SINGLE-PARTICLE ENERGIES

The Of-1p neutron-shell crossroads

Normal ordering of shells for fixed W-S parameter set

DESCRIPTION OF EVOLVING SINGLE-PARTICLE ENERGIES

The Of-1p neutron-shell crossroads

	$N=$				20								28
$\begin{gathered} \text { Calium } \\ z=20 \end{gathered}$	${ }^{3} \mathrm{Ca}$	${ }^{3} \mathrm{Ca}$	${ }^{38} \mathrm{Ca}$	${ }^{39} \mathrm{Ca}$	${ }^{*} \mathrm{Ca}$	${ }^{4} \mathrm{Ca}$	${ }^{2} \mathrm{Ca}$	${ }^{*} \mathrm{Ca}$	"Ca	"Ca	${ }^{4} \mathrm{Ca}$	"Ca	${ }^{\text {aca }}$
$\begin{gathered} \text { Potassium } \\ Z=19 \end{gathered}$	${ }^{3} \mathrm{~K}$	${ }^{3} \mathrm{~K}$	${ }^{3} \mathrm{~K}$	${ }^{3 \times} \mathrm{K}$	${ }^{\text {\% }}$ K	"K	${ }^{*} \mathrm{~K}$	${ }^{*} \mathrm{~K}$	${ }^{*} \mathrm{~K}$	*K	"K	"K	${ }^{*} \mathrm{~K}$
$\substack{\text { Argon } \\ \mathrm{Z}=18}^{\text {a }}$	${ }^{33} \mathrm{Ar}$	${ }^{35} \mathrm{Ar}$	${ }^{3{ }^{\text {Ar }} \text { r }}$	${ }^{3} \mathrm{Ar}$	${ }^{38} \mathrm{Ar}$	Aar	${ }^{\circ} \mathrm{Ar}$	"Ar	${ }^{42} \mathrm{Ar}$	${ }^{\text {sar }}$	"AAr	*sAr	*Ar
Chlorine $\begin{gathered}\text { Z } \\ \text { d }\end{gathered}$	${ }^{3} \mathrm{C}$,	${ }^{3} \mathrm{Cl}$	${ }^{3} \mathrm{C} \mathrm{Cl}$	${ }^{3} \mathrm{Cl}$	${ }^{3} \mathrm{Cl}$	${ }^{3} \mathrm{Cl}$	${ }^{3} \mathrm{Cl}$	${ }^{\text {a }} \mathrm{Cl}$	${ }^{4} \mathrm{Cl}$	${ }^{2 \mathrm{Cl}}$	${ }^{4} \mathrm{Cl}$	${ }^{4} \mathrm{Cl}$	${ }^{*} \mathrm{Cl}$
	${ }^{38}$	${ }^{\text {w }}$	${ }^{24}$	${ }^{\text {ss }}$	${ }^{3} \mathrm{~s}$	${ }^{3} \mathrm{~S}$	s	s	${ }^{4} \mathrm{~S}$	${ }^{4} \mathrm{~S}$	"S	$4{ }^{3}$	${ }^{4} \mathrm{~S}$
$\begin{array}{r}\text { Phosphorus } \\ Z=15 \\ \hline\end{array}$	${ }^{31}$	${ }^{3 p}$	xp	asp	ssp	*p	3P	sap	sp	spp	${ }^{4} \mathrm{p}$	up	4 sp
$\substack{\text { Silicon } \\ Z=14}^{\substack{\text { a }}}$	${ }^{3} \mathrm{Si}$	${ }^{3} \mathrm{Si}$	${ }^{32} \mathrm{Si}$	${ }^{3} \mathrm{Si}$	${ }^{3} \mathrm{Si}$	${ }^{3} \mathrm{Si}$	*Si	${ }^{3} \mathrm{Si}$	${ }^{39} \mathrm{Si}$	${ }^{3} \mathrm{Si}$	${ }^{\text {asi }}$	${ }^{4} \mathrm{Si}$	${ }^{2} \mathrm{~S}$ S
$\underset{\substack{\text { Aluminium } \\ Z=13}}{ }$	${ }^{28} \mathrm{Al}$	${ }^{30} \mathrm{Al}$	${ }^{3} \mathrm{~A}$ A	${ }^{32} \mathrm{Al}$	${ }^{3 \mathrm{Al}}$	${ }^{34} \mathrm{Al}$	${ }^{\text {AAI }}$	${ }^{3} \mathrm{Al}$	${ }^{38} \mathrm{Al}$	${ }^{38} \mathrm{Al}$	${ }^{\text {a Al }}$	${ }^{* A} \mathrm{Al}$	${ }^{4} \mathrm{Al}$
$\begin{array}{r} \text { Magnesium } \\ Z=12 \end{array}$	${ }^{2 \mathrm{mg}} \mathrm{Mg}$	${ }^{2 \times M g}$	${ }^{\text {a }}$ Mg	${ }^{3} \mathrm{Mg}$	${ }^{32} \mathrm{Mg}$	${ }^{3} \mathrm{Mg}$	'Mg	${ }^{3} \mathrm{Mg}$	${ }^{3} \mathrm{Mg}$	${ }^{3} \mathrm{Mg}$	${ }^{2} \mathrm{Mg}$		${ }^{\text {a Mg }}$
$\underset{\substack{\text { Sodium } \\ Z=11}}{ }$	${ }^{2} \mathrm{Na}$	${ }^{2} \mathrm{Na}$	${ }^{29} \mathrm{Na}$	${ }^{3} \mathrm{Na}$	${ }^{3} \mathrm{Na}$	${ }^{32} \mathrm{Na}$	${ }^{3} \mathrm{Na}$	${ }^{3} \mathrm{Na}$	${ }^{3} \mathrm{Na}$		${ }^{3} \mathrm{Na}$		${ }^{3} \mathrm{Na}$
$\begin{gathered} \text { Neon } \\ Z=10 \end{gathered}$	${ }^{2} \mathrm{Ne}$	${ }^{2} \mathrm{Ne}$	${ }^{2} \mathrm{Ne}$	${ }^{\text {a }}$ Ne	${ }^{23} \mathrm{Ne}$	${ }^{3} \mathrm{~N}$	${ }^{\text {a }} \mathrm{Ne}$		${ }^{3} \mathrm{Ne}$				
$\begin{gathered} \text { Fluorine } \\ Z=9 \end{gathered}$	${ }^{28} \mathrm{~F}$	${ }^{\text {xF }}$	${ }^{2} \mathrm{~F}$	${ }^{29}$	${ }^{29} \mathrm{~F}$		${ }^{3} \mathrm{~F}$				-	=	
Oxygen	${ }^{2 \%}$	${ }^{2} 0$	${ }^{\circ} \mathrm{O}$										

Evidence for threshold effects between 1p spin-orbit partners

DESCRIPTION OF EVOLVING SINGLE-PARTICLE ENERGIES

Speculation of a proton 'bubble' in the $Z=14, N=20{ }^{34} \mathrm{Si}$ nucleus

1. Fully vacant proton $1 \mathrm{~s}_{1 / 2}$ orbital
2. Reduction / no particle-particle correlations
${ }^{6}$

d

If bubble exists, does it impact the energy difference between spin-orbit pairs??

Burgunder PRL (2014)

DESCRIPTION OF EVOLVING SINGLE-PARTICLE ENERGIES Smooth behavior of $0 f_{7 / 2}, 1 p_{3 / 2}$ and $1 p_{1 / 2}$ neutron single-particle energies

Proper energy centroid determination: No evidence for 'sudden' change in relative spin-orbit energies

1. No atypical outlier in data
2. Full reproduction by $\mathrm{W}-\mathrm{S}$
calculations

Solid lines: Wood-Saxon potential calculations for fixed A parameter set [varying potential depth]

34S(D,P) MEASUREMENT @ FSU

Extract $\mathrm{Of}_{7 / 2,(5 / 2)}$ \& Op3/2,1/2 neutron strength distributions

States up through 7.5 MeV in 35 S

Complement with CeBrA data [$J \pi$, contaminant ID, etc.]

Consistent orbital angular momentum assignments

34S(D,P) MEASUREMENT @ FSU

Extract $\mathrm{Of}_{7 / 2,(5 / 2)}$ \& Op3/2,1/2 neutron strength distributions

Strength distribution - resolves conflicting information Energy centroids - $\mathrm{N}=28,32,34, \& \mathrm{~S}-\mathrm{O}$ spacings

Compare w/ reduced fragmentation in 33 Si

DESCRIPTION OF EVOLVING SINGLE-PARTICLE ENERGIES

Summary of what we established

- Single-particle energy centroids demonstrate a smooth evolution in energy - reproduced well by Wood-Saxon potential calculations
- Bubble may persist but no clear evidence of impact on S-O size
- How much of the reduction in the $\mathrm{N}=20$ shell gap is accounted for by weak binding?
- What about (ground state) correlations - still missing information
- FSU interaction has done well reproducing spectroscopy within the Of-1p neutron shells
- Derived from data closer to thresholds
- calculated SPE's demonstrate the same trends as the W-S

 calculations

ADDITIONAL SINGLE-PARTICLE TRANSFER MEASUREMENTS

 36S: Neutron removal data not collected, still a missing 1/2+ state in 35P$$
36 S(t, \alpha) 35 P / 36 S(d, p)(d, t) 37,35 S
$$

Search for $1 / 2^{+}$excited state in $35 p$ In inverse kinematics

Neutron Removal

- Checking feasibility of (d, t) / (p, d) at $>8 \mathrm{MeV} / \mathrm{u}$
- Searching for ell=1 or 3 strength with states in 35 S
- Complement with adding reaction at higher Ex, Of5/2 neutron orbital energy

Proton Removal

- Where is the $2 p-2 h(2 h w) 1 / 2+$ neutron state in 35 P?
- $0^{+}{ }^{+}$is the first excited state in ${ }^{34} \mathrm{Si}$
- Detailed measurement over select excitation energy regions

ADDITIONAL SINGLE-PARTICLE TRANSFER MEASUREMENTS

 36S: Neutron removal data not collected, still a missing 1/2+ state in ${ }^{35} \mathrm{P}$$$
36 S(t, \alpha) 35 P / 36 S(d, p)(d, t) 37,35 S
$$

Search for $1 / 2+$ excited state in $35 P$

 In inverse kinematicsNeutron Removal

- Checking feasibility of (d,t) / (p,d) at >8 MeV/u
- Searching for ell=1 or 3 strength with states in 35 S
- Complement with adding reaction at higher Ex, Off/2 neutron orbital energy

Proton Removal

- Where is the $2 \mathrm{p}-2 \mathrm{~h}$ (2hw) $1 / 2+$ neutron state in 35 p ?
- $0^{+}{ }^{+}$is the first excited state in ${ }^{34} \mathrm{Si}$
- Detailed measurement over select excitation energy regions

SUMMARY

- Propose ${ }^{34,36} \mathrm{~S}(\mathrm{t}, \mathrm{p})$ reactions to investigate 2 n pairing correlations
- Integral part of a systematic study of single-particle vs. correlation energies in Z ~ 12-20 nuclei
- Exploring additional reactions on ${ }^{36}$ S using both (t, α) and ($\left.p, d\right) /(d, t)$
- Complements recent (d, p) results, connecting stability to the Island of Inversion around $\mathrm{N} \sim 20$

ACKNOWLEDGMENTS

- A. N. Kuchera, G. Ryan, B. D’Amato, O. M. Guarinello, P. S. Kielb Davidson College
- L. T. Baby, A. L. Conley, B. Kelly, G. W. McCann, M. Spieker et al., Florida State University
- B. P. Kay - Argonne Nat. Lab.
- Jie Chen - SUSTech, China

[^0]:

