

BRIEF OUTLINE

+ Proposed measurements

+ Motivation

+ On-going / complementary program

CORRELATIONS THROUGHOUT THE N=18-20-22 ISOTONES Supplement available data with new & deeper pair transfer information

^{34,36}S(t,p)^{36,38}S at ~6 MeV/u

Motivation

- Only $0+1 \rightarrow 0+1$ data available for $34S \rightarrow 36S$
- Systematics of $0_{1} / 0_{i}$ cross sections $[0_{1} / 2_{i}]$
- Disentangle (fp)² components
- Complements an inverse kinematics reaction planned at HELIOS
- Lack of definitive info in ³⁸S levels

SE-SPS [+ CeBrA]

- Dedicated run for angular distributions
- Ep > 20 MeV
- Complementary run with γ -ray detection if possible

Targets

- ³⁴S Available from CATS [~90/10 A = 34/32] ~10's ug/cm2
- Used at SE-SPS for previous ${}^{34}S(d,p[\gamma]){}^{35}S$ measurement
- New ³⁶S from CATS [AgS 88% enriched] 10's ug/cm2

CORRELATIONS ACROSS N = 18 - 20 - 22 ISOTONES Supplement available data with new & deeper pair transfer information

- Ar(t,p) complete data sets available at 6.67 MeV/u - thorough interpretations
- S(t,p)
 - missing excited level population into ³⁶S
 - 6 MeV/u ³⁶S(t,p) but ambiguous info in ³⁸S around 4 - 5.5 MeV
- Si(t,p)
 - ³²Si(t,p) completed at ReA w/ SOLARIS
 - ³⁴Si(t,p) future rare-isotope measurement

Volume 43B, number 6	PHYSICS LETTERS	
0 ⁺ STATES NEA	R THE N=20 NEUTRON SHELL FROM Ar(t	, p) REACTION
R.F Los Alamos Scier	F. CASTEN*, E.R. FLYNN, J.D. GARRETT*, S. ORB ntific Laboratory, University of California, Los Alamos, New M	ESEN Iexico 87544, USA
	and	
	O. HANSEN	
	The Niels Bohr Institute, University of Copenhagen, Denmar	:
2.F Nuclear Phy	vsics A246 (1975) 117–140; © North-Holland I	Publishing Co.,
2.F Nuclear Phy Not to be rep	vsics A246 (1975) 117-140; C North-Holland I produced by photoprint or microfilm without written	Publishing Co.,
2.F Nuclear Phy Not to be rep	vsics A246 (1975) 117-140; ONorth-Holland is produced by photoprint or microfilm without written p	Publishing Co.,
2.F Nuclear Phy Not to be rep	vsics A246 (1975) 117-140; © North-Holland is produced by photoprint or microfilm without written p	Publishing Co.,
2.F Nuclear Phy Not to be rep	vsics A246 (1975) 117-140; ONorth-Holland is produced by photoprint or microfilm without written p	Publishing Co.,

CORRELATIONS ACROSS N=18-20-22 ISOTONES Supplement available data with new & deeper pair transfer information

- Ar(t,p) complete data sets available at 6.67 MeV/u - thorough interpretations
- S(t,p)
 - missing excited level population into ³⁶S
 - 6 MeV/u ³⁶S(t,p) but ambiguous info in ³⁸S around 4 - 5.5 MeV
- Si(t,p)
 - ³²Si(t,p) completed at ReA w/ SOLARIS
 - ³⁴Si(t,p) future rare-isotope measurement

0.017 ps 8

55 fs 10

4523.0 6

4575.2 7 2+

5021.5 3 4-5206.1 3 5-

5251.2 10 3⁻ 70 fs 30

0 30 60 90

θ_{cm}(deg)

CORRELATIONS ACROSS N=18-20-22 ISOTONES Supplement available data with new & deeper pair transfer information

- Ar(t,p) complete data sets available at 6.67 MeV/u - thorough interpretations
- S(t,p)
 - missing excited level population into ³⁶S
 - 6 MeV/u ³⁶S(t,p) but ambiguous info in ³⁸S around 4 - 5.5 MeV
- Si(t,p)
 - ³²Si(t,p) completed at ReA w/ SOLARIS
 - ³⁴Si(t,p) future rare-isotope measurement

Hoffman et al., PRC (2023)

CORRELATIONS ACROSS N = 18 - 20 - 22 ISOTONES Supplement available data with new & deeper pair transfer information

- Ar(t,p) complete data sets available at 6.67 MeV/u - thorough interpretations
- S(t,p)
 - missing excited level population into ³⁶S
 - 6 MeV/u ³⁶S(t,p) but ambiguous info in ³⁸S around 4 - 5.5 MeV
- Si(t,p)
 - ³²Si(t,p) completed at ReA w/ SOLARIS
 - ³⁴Si(t,p) future rare-isotope measurement

CORRELATIONS ACROSS N = 18 - 20 - 22 ISOTONES Supplement available data with new & deeper pair transfer information

- Ar(t,p) complete data sets available at 6.67 MeV/u - thorough interpretations
- S(t,p)
 - missing excited level population into ³⁶S
 - 6 MeV/u ³⁶S(t,p) but ambiguous info in ³⁸S around 4 - 5.5 MeV
- Si(t,p)
 - ³²Si(t,p) completed at ReA w/ SOLARIS
 - ³⁴Si(t,p) future rare-isotope measurement

CORRELATIONS THROUGHOUT THE N=18-20-22 ISOTONES Supplement available data with new & deeper pair transfer information

^{34,36}S(t,p)^{36,38}S at ~6 MeV/u

Motivation

- Only $0+1 \rightarrow 0+1$ data available for $34S \rightarrow 36S$
- Systematics of $0_{1} / 0_{i}$ cross sections $[0_{1} / 2_{i}]$
- Disentangle (fp)² components
- Complements an inverse kinematics reaction planned at HELIOS
- Lack of definitive info in ³⁸S levels

SE-SPS [+ CeBrA]

- Dedicated run for angular distributions
- Ep > 20 MeV
- Complementary run with γ -ray detection if possible

Targets

- ³⁴S Available from CATS [~90/10 A = 34/32] ~10's ug/cm2
- Used at SE-SPS for previous ${}^{34}S(d,p[\gamma]){}^{35}S$ measurement
- New ³⁶S from CATS [AgS 88% enriched] 10's ug/cm2

DESCRIPTION OF EVOLVING SINGLE-PARTICLE ENERGIES Influx of data: radioactive beam era + enhanced equipment + techniques

DESCRIPTION OF EVOLVING SINGLE-PARTICLE ENERGIES Influx of data: radioactive beam era + enhanced equipment + techniques

DESCRIPTION OF EVOLVING SINGLE-PARTICLE ENERGIES The Of-1p neutron-shell crossroads

N =						20 2								
Calcium Z=20	³⁶ Ca	³⁷ Ca	³⁵Ca	зэСа	₄₀Ca	⁴¹Ca	¹² Ca	⁴³ Ca	44Ca	⁴⁵Ca	⁴⁶ Ca	47Ca	⁴⁸ Ca	
Potassium Z=19	³⁵ K	³⁶ K	³⁷ K	³⁸ K	³⁹ K	⁴⁰K	⁴¹ K	⁴²K	⁴³K	⁴⁴K	⁴⁵K	⁴⁵K	47K	
Argon Z=18	³⁴ Ar	³⁵ Ar	³⁶ Ar	³⁷ Ar	³⁸ Ar	³⁹ Ar	⁴⁰Ar	⁴¹Ar	⁴² Ar	⁴³ Ar	⁴⁴Ar	⁴⁵Ar	46Ar	
Chlorine Z=17	³³ Cl	³⁴Cl	³⁵ Cl	³⁶ Cl	³⁷ CI	³⁸ Cl	³⁹ CI	⁴⁰CI	⁴'Cl	⁴² Cl	⁴³ Cl	⁴⁴Cl	⁴⁵Cl	
Sulfur Z=16	³² S	³³ S	³⁴ S	³⁵ S	³⁶ S	³⁷ S	³®S	³⁹ S	₄₀S	41 S	42S	43 S	44S	
Phosphorus Z=15	з₁₽	32 P	33 P	³⁴ P	35P	зер	³⁷ P	зер	зэР	≁⁰P	41P	⁴² P	⁴³ P	
Silicon Z=14	³⁰Si	³¹ Si	³² Si	³³ Si	³⁴ Si	³⁵ Si	³⁶ Si	³⁷ Si	³®Si	³⁹ Si	⁴⁰Si	⁴¹Si	⁴² Si	
Aluminium Z=13	²⁹ AI	³⁰ AI	³¹ AI	³² Al	³³ Al	³⁴ Al	³⁵ Al	³⁶ AI	³⁷ Al	³⁸ AI	³⁹ AI	⁴⁰AI	⁴¹AI	
Magnesium Z=12	²⁸ Mg	²⁹ Mg	эоMg	³¹Мg	³² Mg	³³ Mg	⁴Mg	³⁵Mg	³⁶ Mg	³⁷ Mg	³⁸ Mg		⁴⁰Mg	
Sodium Z=11	²⁷ Na	²⁸ Na	²⁹ Na	³⁰Na	³¹ Na	³² Na	³³ Na	³⁴Na	³⁵ Na		³⁷ Na		³⁹ Na	
Neon Z=10	²⁶ Ne	²⁷ Ne	²⁸ Ne	²⁹ Ne	³⁰ Ne	³¹ Ne	³² Ne		³⁴ Ne					
Fluorine Z=9	²⁵ F	²⁶ F	²⁷ F	²⁸ F	²⁹ F		зıЕ				D			
Oxygen Z=8	²⁴ O	²⁵ O	²⁶ O							n fra Berger Alexandra	ht and a start and the se	an ann an	-	
D = D														

Normal ordering of shells for fixed W-S parameter set

DESCRIPTION OF EVOLVING SINGLE-PARTICLE ENERGIES The Of-1p neutron-shell crossroads

N =					20								2
Calcium Z=20	³⁶ Ca	³⁷ Ca	³⁵Ca	зэСа	₄₀Ca	⁴'Ca	¹² Ca	⁴³Ca	^{₄₄} Ca	⁴⁵ Ca	⁴⁶ Ca	⁴⁷ Ca	⁴⁸ C
Potassium Z=19	³⁵ K	³⁶ K	³⁷ K	³⁸ K	³⁹ K	⁴⁰K	⁴¹K	⁴²K	⁴³K	⁴⁴K	⁴⁵K	⁴⁵K	47
Argon Z=18	³⁴ Ar	³⁵ Ar	³⁶ Ar	³⁷ Ar	³⁸ Ar	³⁹ Ar	⁰Ar	⁴¹Ar	42Ar	⁴³ Ar	44Ar	⁴⁵Ar	46 J
Chlorine Z=17	³³ CI	³⁴Cl	³⁵ Cl	³⁶ CI	³⁷ CI	³⁸ CI	³⁹ CI	⁴⁰CI	⁴'Cl	⁴² Cl	⁴³ Cl	⁴⁴Cl	45(
Sulfur Z=16	³² S	³³ S	³⁴ S	³⁵ S	³⁶ S	³⁷ S	³S	³⁹ S	40S	41S	⁴² S	⁴³ S	44
Phosphorus Z=15	з₁₽	32P	³³ P	³⁴ P	35P	∞р	³⁷ P	заР	₃₽Р	۴P	41P	42P	43
Silicon Z=14	³⁰Si	³¹ Si	³² Si	³³ Si	³⁴ Si	³⁵ Si	³⁶ Si	³⁷ Si	³®Si	³⁹ Si	40Si	⁴¹Si	420
Aluminium Z=13	²⁹ AI	³⁰AI	³¹ AI	³² Al	³³ Al	³⁴ AI	³⁵ AI	³⁶ Al	³⁷ AI	³⁸ AI	³⁹ AI	⁴⁰AI	41 <i>j</i>
Magnesium Z=12	²⁸ Mg	²⁹ Mg	эоMg	³¹Mg	³² Mg	³³ Mg	⁴Mg	³⁵ Mg	³⁶ Mg	³⁷ Mg	³⁸ Mg		⁴°N
Sodium Z=11	²⁷ Na	²⁸ Na	²⁹ Na	³⁰Na	³¹ Na	³² Na	³³ Na	³⁴Na	³⁵ Na		³⁷ Na		³⁹ N
Neon Z=10	²⁶ Ne	²⁷ Ne	²⁸ Ne	²⁹ Ne	³⁰ Ne	³¹ Ne	³² Ne		³⁴ Ne				
Fluorine Z=9	²⁵ F	²⁶ F	²⁷ F	²⁸ F	²⁹ F		зıЕ				D		
Oxygen Z=8	²⁴ O	²⁵ O	²⁶ O							yan a lage yan a a kuru			
$D_{-} = D_{-} D_{-}$													

13

DESCRIPTION OF EVOLVING SINGLE-PARTICLE ENERGIES Speculation of a proton 'bubble' in the Z=14, N=20 ³⁴Si nucleus

(a)

1. Fully vacant proton 1s_{1/2} orbital 2. Reduction / no particle-particle correlations

Mutschler Nature (2017)

If bubble exists, does it impact the energy difference between spin-orbit pairs??

Burgunder PRL (2014)

DESCRIPTION OF EVOLVING SINGLE-PARTICLE ENERGIES Smooth behavior of 0f7/2, 1p3/2 and 1p1/2 neutron single-particle energies

Proper energy centroid determination: No evidence for 'sudden' change in relative spin-orbit energies

1. No atypical outlier in data 2. Full reproduction by W-S calculations

Solid lines: Wood-Saxon potential calculations for fixed A parameter set [varying potential depth]

³⁴S(D,P) MEASUREMENT @ FSU Extract Of_{7/2,(5/2)} & Op_{3/2,1/2} neutron strength distributions

States up through 7.5 MeV in ³⁵S

Complement with CeBrA data $[J^{\pi}, \text{ contaminant ID, etc.}]$

Consistent orbital angular momentum assignments

Kuchera et al., (2024)

³⁴S(D,P) MEASUREMENT @ FSU Extract 0f_{7/2,(5/2)} & 0p_{3/2,1/2} neutron strength distributions

Strength distribution - resolves conflicting information Energy centroids - N = 28, 32, 34, & S-O spacings

Compare w/ reduced fragmentation in ³³Si

Chen et al., (2024)

DESCRIPTION OF EVOLVING SINGLE-PARTICLE ENERGIES Summary of what we established

- Single-particle energy centroids demonstrate a smooth evolution in energy - reproduced well by Wood-Saxon potential calculations
- Bubble may persist but no clear evidence of impact on S-O size
- How much of the reduction in the N = 20 shell gap is accounted for by weak binding?
- What about (ground state) correlations still missing information

- FSU interaction has done well reproducing spectroscopy within the Of-1p neutron shells
 - Derived from data closer to thresholds
 - calculated SPE's demonstrate the same trends as the W-S calculations

Lubna et al., PRR (2020)

ADDITIONAL SINGLE-PARTICLE TRANSFER MEASUREMENTS ³⁶S: Neutron removal data not collected, still a missing 1/2⁺ state in ³⁵P

$^{36}S(t, \alpha)^{35}P / ^{36}S(d, p)(d, t)^{37,35}S$

Neutron Removal

- Checking feasibility of (d,t) / (p,d) at >8 MeV/u
- Searching for ell=1 or 3 strength with states in ³⁵S
- Complement with adding reaction at higher Ex, 0f_{5/2} neutron orbital energy

Proton Removal

- Where is the 2p-2h (2hw) 1/2+ neutron state in ^{35}P ?
- 0_{2}^{+} is the first excited state in ${}^{34}Si$
- Detailed measurement over select excitation energy regions

Search for 1/2⁺ excited state in ³⁵P In inverse kinematics

Salathe PRC (2020)

ADDITIONAL SINGLE-PARTICLE TRANSFER MEASUREMENTS ³⁶S: Neutron removal data not collected, still a missing 1/2⁺ state in ³⁵P

$^{36}S(t, \alpha)^{35}P / ^{36}S(d, p)(d, t)^{37,35}S$

Neutron Removal

- Checking feasibility of (d,t) / (p,d) at >8 MeV/u
- Searching for ell=1 or 3 strength with states in ³⁵S
- Complement with adding reaction at higher Ex, 0f_{5/2} neutron orbital energy

Proton Removal

- Where is the 2p-2h (2hw) 1/2+ neutron state in ^{35}P ?
- 0_{2}^{+} is the first excited state in ${}^{34}Si$
- Detailed measurement over select excitation energy regions

Search for 1/2+ excited state in ³⁵P In inverse kinematics

FIG. 5. The excitation energy measured in the ${}^{36}S(d, {}^{3}He){}^{35}P$

Salathe PRC (2020)

SUMMARY

- Propose ^{34,36}S(t,p) reactions to investigate 2n pairing correlations Integral part of a systematic study of single-particle vs. correlation energies in Z ~ 12 - 20 nuclei
- Exploring additional reactions on ^{36}S using both (t, α) and (p,d)/(d,t) Complements recent (d,p) results, connecting stability to the Island of Inversion around N ~ 20

ACKNOWLEDGMENTS

- A. N. Kuchera, G. Ryan, B. D', Davidson College
- L. T. Baby, A. L. Conley, B. Ke
 Florida State University
- B. P. Kay Argonne Nat. Lab.
- Jie Chen SUSTech, China

Calem R Hoffman - <u>crhoffman@anl.gov</u> [DOE office of science Grant. No DE-AC02-06CH11357]

A. N. Kuchera, G. Ryan, B. D'Amato, O. M. Guarinello, P. S. Kielb -

L. T. Baby, A. L. Conley, B. Kelly, G. W. McCann, M. Spieker et al., -

.
