Probing pairing correlations in nuclei with (t,p) reactions

Gregory Potel Aguilar

Tallahassee, March 15 2024

LLNL-PRES-XXXXXX
This work was performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under contract DE-AC52-07NA27344. Lawrence Livermore National Security, LLC

Introduction: superconductivity in metals

- In 1911, H. K. Onnes liquefies Helium and discovers superconductivity in mercury.
- When cooled below a critical temperature (e.g. $T_c = 7.26$ K for lead, $T_c = 3.69$ K for tin), many metals become superconductors.
- Persistent supercurrents can be induced in superconducting coils.

BCS theory and Cooper pairs

- Below T_c , electrons form enormous (correlation length $\xi \sim 10^4$ Å) quasi-bosons (Cooper pairs).
- The binding interaction results from the screening of the Coulomb force and the exchange of lattice phonons.
- An energy gap develops in the low-lying spectrum.
- The Cooper pairs form a condensate

 $\ket{BCS} = \prod_{
u} \left(U_{
u} + V_{
u} e^{i\phi} a^{\dagger}_{
u} a^{\dagger}_{\widetilde{
u}}
ight) \ket{0}$

Some experimental evidence of nuclear superfluidity

- Gap in the spectrum of even-even nuclei associated with the breaking of a Cooper pair.
- Odd-even mass staggering: enhanced binding for even number of nucleons.
- Enhanced two-nucleon transfer reactions due to the coherence of the Cooper pair wave function.

But, metals and nuclei are quite different, aren't they?

questions still arise

- Can we observe Cooper pairs in nuclei?
- How do we make a quantitative assessment of pair correlations in nuclei?
- How do we export our knowledge of nuclear superfluidity to nuclear matter?

But, metals and nuclei are quite different, aren't they?

questions still arise

- Can we observe Cooper pairs in nuclei?
- How do we make a quantitative assessment of pair correlations in nuclei?
- How do we export our knowledge of nuclear superfluidity to nuclear matter?

(t,p) reactions are a specific probe of nuclear pairing correlations

But, metals and nuclei are quite different, aren't they?

The 2 neutron transfer process is very delocalized

The 2 neutron transfer process is very delocalized

Theory should account for the *absolute value* of the cross section

enhancement factor with respect to the transfer of uncorrelated neutrons: $\varepsilon = 20.6$

Experimental data and shell model wavefunction from Guazzoni *et al.* PRC **74** 054605 (2006)

Reaction+Structure theory works well across the nuclear chart

LLNL-PRES-XXXXXX

Looking for something new in the nuclear spectrum: The Giant Pairing Vibration (GPV)

Volume 69B, number 2

PHYSICS LETTERS

1 August 1977

HIGH-LYING PAIRING RESONANCES*

R.A. BROGLIA

The Niels Bohr Institute, University of Copenhagen, DK-2100 Copenhagen Ø, Denmark¹ State University of New York, Department of Physics, Stony Brook, New York 11794, USA

and

D.R. BES^2

NORDITA, DK-2100 Copenhagen Ø, Denmark

Pairing vibrations based on the excitation of pairs of particles and holes across major shells are predicted at an excitation energy of about $70/A^{1/3}$ MeV and carrying a cross section which is 20%-100% the ground state cross section.

Collective pairing mode predicted almost 50 years ago, awaiting experimental confirmation?

(t,p) is an ideal process to populate the elusive Giant Pairing Vibration

(t,p) is an ideal process to populate the elusive Giant Pairing Vibration

-5 E (MeV)

-10

(t,p) is an ideal process to populate the elusive Giant Pairing Vibration

Excited halo state in ¹²Be (0⁺₂)

Excited halo state in ¹²Be (0⁺₂)

The Pygmy Dipole Resonance (PDR) as a two-quasiparticle mode

- The PDR is rather well described in the harmonic approximation (RPA, QRPA) as a two-quasiparticle mode.
- Therefore, PDR in a nucleus A₀ can be better probed with two-quasiparticle fields, i.e., particle-hole (*ph*), particle-particle (*pp*), and hole-hole (*hh*) fields.

The Pygmy Dipole Resonance (PDR) as a two-quasiparticle mode

- The PDR is rather well described in the harmonic approximation (RPA, QRPA) as a two-quasiparticle mode.
- Therefore, PDR in a nucleus A₀ can be better probed with two-quasiparticle fields, i.e., particle-hole (*ph*), particle-particle (*pp*), and hole-hole (*hh*) fields.

The Pygmy Dipole Resonance (PDR) as a two-quasiparticle mode

- The PDR is rather well described in the harmonic approximation (RPA, QRPA) as a two-quasiparticle mode.
- Therefore, PDR in a nucleus A₀ can be better probed with two-quasiparticle fields, i.e., particle-hole (*ph*), particle-particle (*pp*), and hole-hole (*hh*) fields.

Probing the ¹¹Li PDR with 2-neutron transfer

THE EUROPEAN

PHYSICAL JOURNAL A

Ehr. Phys. J. A (2019) **55**: 243 DOI 10.1140/epja/i2019-12789-y

Regular Article – Theoretical Physics

Characterization of vorticity in pygmy resonances and soft-dipole modes with two-nucleon transfer reactions^{\star}

R.A. Broglia^{1,2}, F. Barranco³, G. Potel^{4,a}, and E. Vigezzi⁵

EUROPEAN ORGANIZATION FOR NUCLEAR RESEARCH

Probing the $^{11}\mathrm{Li}$ low-lying dipole strength via $^{9}\mathrm{Li}(t,p)$ with the ISS

Y. Ayyad¹, E. Vigezzi², G. Potel³, R. Broglia^{4,5}, B.P. Kay⁶,
A.O. Macchiavelli⁷, H. Alvarez-Pol⁸, F. Barranco⁹, D. Bazin^{1,10}, M. Caamaño⁸,
A. Ceulemans¹¹, J. Chen¹, H.L. Crawford⁷, B. Fernández-Domínguez⁸, S.J. Freeman¹²,
L.P. Gaffney¹³, C.R. Hoffman⁶, R. Kanungo¹⁴, C. Morse⁷, O. Poleshchuk¹¹, R. Raabe¹¹,
C.A. Santamaria⁷, D.K. Sharp¹², T. L. Tang⁶, K. Wimmer¹⁵, A.H. Wuosmaa¹⁶

experiment approved at ISOLDE facility (CERN). Spokepersons: Ayyad, Vigezzi

the ¹¹Li PDR has the structure of an elementary quantum vortex

structure of a multipolar (1⁻) Cooper pair: elementary quantum vortex

the ¹¹Li PDR has the structure of an elementary quantum vortex

Using the Surrogate Reaction Method (SRM) to infer ^AX(n,γ)^{A+1}X from ^AX(d,pγ)^{A+1}X

Using the Surrogate Reaction Method (SRM) to infer ^AX(n,γ)^{A+1}X from ^AX(d,pγ)^{A+1}X

Using the SRM to infer ^{A+1}X(n,γ)^{A+2}X from ^AX(t,pγ)^{A+2}X

Using the SRM to infer ^{A+1}X(n,γ)^{A+2}X from ^AX(t,pγ)^{A+2}X

Using the SRM to infer ^{A+1}X(n,γ)^{A+2}X from ^AX(t,pγ)^{A+2}X

An opportunity to thoroughly benchmark the SRM with $^{95}Mo(n,\gamma)$

Ratkiewicz, Cizewski, Escher, GP, et al. Phys. Rev. Lett. 122052502 (2019)

- Excellent agreement with (n, γ) data.
- The fitted Hauser-Feshbach decay is used to infer (n, γ) rates.
- No previous knowledge of D_0 , and/or $\langle \Gamma_{\gamma} \rangle$ is needed.
- No need for separate determination of NLD and γSF .

An opportunity to thoroughly benchmark the SRM with $^{95}Mo(n,\gamma)$

Ratkiewicz, Cizewski, Escher, GP, et al. Phys. Rev. Lett. 122052502 (2019)

- Excellent agreement with (n, γ) data.
- The fitted Hauser-Feshbach decay is used to infer (n, γ) rates.
- No previous knowledge of D_0 , and/or $\langle \Gamma_{\gamma} \rangle$ is needed.
- No need for separate determination of NLD and γSF .

An opportunity to thoroughly benchmark the SRM with $^{95}Mo(n,\gamma)$

Ratkiewicz, Cizewski, Escher, GP, et al. Phys. Rev. Lett. 122052502 (2019)

- Excellent agreement with (n, γ) data.
- The fitted Hauser-Feshbach decay is used to infer (n, γ) rates.
- No previous knowledge of D_0 , and/or $\langle \Gamma_{\gamma} \rangle$ is needed.
- No need for separate determination of NLD and γSF .

International School of Physics "Enrico Fermi"

Deadline for applications: April 10

COURSE 213 - NUCLEAR STRUCTURE AND REACTIONS FROM A BROAD PERSPECTIVE

27 June - 2 July 2024

Directors

Francisco Barranco - University of Seville (Spain) Enrico Vigezzi - INFN Milano (Italy)

Scientific Secretary Gregory Potel - Lawrence Livermore National Laboratory (USA)

This School is dedicated to the memory of Ricardo A. Broglia.

https://www.sif.it/corsi/scuola_fermi/2024/213

Thank you for your attention!

Lawrence Livermore National Laboratory

Is there a pygmy resonance in ¹¹Li? What's its structure?

some questions to address:

- How do we characterize the PDR?
- Is it distinct from the GDR?
- How does it compare with theory?

Lawrence Livermore National Laboratory

particle-particle correlations might be a distinctive feature of PDRs

Cavallaro et al., PRL 118, 012701 (2017)

Barranco, GP, Vigezzi, Broglia PRC 101, 031305(R) (2020)

GP, Barranco, Vigezzi, Broglia PRL **105** 172502 (2010)

 $0.45|s_{1/2}^2(0)\rangle + 0.55|p_{1/2}^2(0)\rangle + 0.04|d_{5/2}^2(0)\rangle$ $+ 0.7 |(p_{1/2}, s_{1/2})_{1^-} \otimes 1^-; 0 \rangle$ $+0.1 | (s_{1/2}, d_{5/2})_{2^+} \otimes 2^+; 0 \rangle$ 10° ○ 1/2⁻ experiment 1/2⁻ channel 1 (halo transfer) 1/2⁻ (total) channels c=2+c=3 reaction calculation in 2-10 order DWBA, dominated by da/dΩ (mb) successive transfer of the 2 neutrons (E. Vigezzi talk yesterday) 10 9Li(Ex=2.69 Mev 1/2-) 10^{−3}∟___0 50 100 150 $\theta_{\rm CM}$

Lawrence Livermore National Laboratory

LLNL-PRES-XXXXX

LLNL-PRES-XXXXXX

LINL-PRES-XXXXX

The PDR as a two-quasiparticle mode

- The PDR is rather well described in the harmonic approximation (RPA, QRPA) as a two-quasiparticle mode.
- Therefore, PDR in a nucleus A₀ can be better probed with two-quasiparticle fields, i.e., particle-hole (*ph*), particle-particle (*pp*), and hole-hole (*hh*) fields.

The PDR as a two-quasiparticle mode

- The PDR is rather well described in the harmonic approximation (RPA, QRPA) as a two-quasiparticle mode.
- Therefore, PDR in a nucleus A₀ can be better probed with two-quasiparticle fields, i.e., particle-hole (*ph*), particle-particle (*pp*), and hole-hole (*hh*) fields.

The PDR as a two-quasiparticle mode

- The PDR is rather well described in the harmonic approximation (RPA, QRPA) as a two-quasiparticle mode.
- Therefore, PDR in a nucleus A₀ can be better probed with two-quasiparticle fields, i.e., particle-hole (*ph*), particle-particle (*pp*), and hole-hole (*hh*) fields.

we compute the ¹¹Li PDR structure in RPA

	3 representative low-lying dipole RPA peaks														IOP Publishing	Physica Scripta
	E	=0.65	MeV	E=1.21 MeV							E=	=2 Me'	V		Phys. Scr. 94 (2019) 114002 (18pp) https://doi.org/10.	1088/1402-4896/ab243
	i	j	X_{ij}	Y_{ij}		i	j	X_{ij}	Y_{ij}		i	j	X_{ij}	Y _{ij}	Pygmy resonances: what's in a name	?
ν	$2s_{1/2}$	$1p_{1/2}$	-0.780	0.078	ν	$2s_{1/2}$	$1p_{1/2}$	-0.119	0.048	ν	$3s_{1/2}$	$1p_{1/2}$	-0.118	0.040	D A Propio ^{1,2,7} E Powence ³ A Idini ⁴ C Potol ⁵ and E Vicenti ⁶	
ν	$3s_{1/2}$	$1p_{1/2}$	0.479	0.108	ν	$3s_{1/2}$	$1p_{1/2}$	-0.748	0.074	ν	$4s_{1/2}$	$1p_{1/2}$	-0.821	0.046	R A broglia \mathcal{C} , F barranco, A lumi Ψ , G Potel Ψ and E vigezzi	
ν	$4s_{1/2}$	$1p_{1/2}$	0.220	0.106	ν	$4s_{1/2}$	$1p_{1/2}$	0.410	0.080	ν	$5s_{1/2}$	$1p_{1/2}$	0.250	0.046		
ν	$5s_{1/2}$	$1p_{1/2}$	0.144	0.093	ν	$5s_{1/2}$	$1p_{1/2}$	0.181	0.075	ν	$6s_{1/2}$	$1p_{1/2}$	0.116	0.043		
ν	$6s_{1/2}$	$1p_{1/2}$	0.106	0.080	ν	$6s_{1/2}$	$1p_{1/2}$	0.117	0.067	ν	$1p_{3/2}$	$4d_{5/2}$	0.144	0.081		
ν	$1p_{3/2}$	$4d_{5/2}$	0.166	0.139	ν	$1p_{3/2}$	$4d_{5/2}$	0.170	0.121	ν	$1p_{3/2}$	$5d_{5/2}$	0.201	0.125		
ν	$1p_{3/2}$	$5d_{5/2}$	0.241	0.208	ν	$1p_{3/2}$	$5d_{5/2}$	0.243	0.183	ν	$1p_{3/2}$	$6d_{5/2}$	0.201	0.135		
ν	$1p_{3/2}$	$6d_{5/2}$	0.250	0.221	ν	$1p_{3/2}$	$6d_{5/2}$	0.249	0.196	ν	$1p_{3/2}$	$7d_{5/2}$	0.156	0.112		
ν	$1p_{3/2}$	$7d_{5/2}$	0.199	0.180	ν	$1p_{3/2}$	$7d_{5/2}$	0.196	0.161	ν	$1p_{3/2}$	$8d_{5/2}$	0.113	0.085		
ν	$1p_{3/2}$	$8d_{5/2}$	0.148	0.135	ν	$1p_{3/2}$	$8d_{5/2}$	0.144	0.122	ν	$1p_{1/2}$	$9d_{3/2}$	-0.126	0.014		
ν	$1p_{3/2}$	$9d_{5/2}$	0.110	0.102	ν	$1p_{3/2}$	$9d_{5/2}$	0.107	0.093	ν	$1p_{1/2}$	$10d_{3/2}$	0.187	0.026	C OSS a	
ν	$1p_{1/2}$	$4d_{3/2}$	0.103	0.075	ν	$1p_{1/2}$	$2d_{3/2}$	0.168	0.024	ν	$1p_{1/2}$	$11d_{3/2}$	0.121	0.040		
ν	$1p_{1/2}$	$5d_{3/2}$	0.119	0.095	ν	$1p_{1/2}$	$3d_{3/2}$	0.114	0.043	ν	$1p_{1/2}$	$12d_{3/2}$	0.113	0.053		
ν	$1p_{1/2}$	$6d_{3/2}$	0.128	0.108	ν	$1p_{1/2}$	$4d_{3/2}$	0.117	0.063	ν	$1p_{1/2}$	$13d_{3/2}$	0.111	0.064		
ν	$1p_{1/2}$	$7d_{3/2}$	0.128	0.112	ν	$1p_{1/2}$	$5d_{3/2}$	0.126	0.081	ν	$1p_{1/2}$	$14d_{3/2}$	0.104	0.068		
ν	$1p_{1/2}$	$8d_{3/2}$	0.117	0.106	ν	$1p_{1/2}$	$6d_{3/2}$	0.131	0.094	π	$1p_{3/2}$	$1d_{5/2}$	0.245	0.210		
π	$2s_{1/2}$	$1p_{3/2}$	-0.136	-0.131	ν	$1p_{1/2}$	$7d_{3/2}$	0.128	0.099							
π	$1p_{3/2}$	$1d_{5/2}$	0.337	0.322	ν	$1p_{1/2}$	$8d_{3/2}$	0.116	0.094							
					π	$2s_{1/2}$	$1p_{3/2}$	-0.130	-0.12							
					π	$1p_{3/2}$	$1d_{5/2}$	0.322	0.294							

we compute the ¹¹Li PDR structure in RPA

	3 representative low-lying dipole RPA peaks														IOP Publishing	Physica Scripta
	E	=0.65	MeV	E=1.21 MeV							E=2 MeV				Phys. Scr. 94 (2019) 114002 (18pp)	https://doi.org/10.1088/1402-4896/ab2431
	i	j	X_{ij}	Y _{ij}		i	j	X_{ij}	Y_{ij}		i	j	X_{ij}	Y _{ij}	Pygmy resonances: what's in	a name?
ν ν ν ν	$\begin{array}{r} 2s_{1/2} \\ 3s_{1/2} \\ 4s_{1/2} \\ 5s_{1/2} \\ 6s_{1/2} \end{array}$	$\begin{array}{c} 1p_{1/2} \\ 1p_{1/2} \\ 1p_{1/2} \\ 1p_{1/2} \\ 1p_{1/2} \\ 1p_{1/2} \end{array}$	-0.780 0.479 0.220 0.144 0.106	0.078 0.108 0.106 0.093 0.080		$\begin{array}{r} 2s_{1/2} \\ 3s_{1/2} \\ 4s_{1/2} \\ 5s_{1/2} \\ 6s_{1/2} \end{array}$	$\begin{array}{c} 1p_{1/2} \\ 1p_{1/2} \\ 1p_{1/2} \\ 1p_{1/2} \\ 1p_{1/2} \\ 1p_{1/2} \end{array}$	$-0.119 \\ -0.748 \\ 0.410 \\ 0.181 \\ 0.117$	0.048 0.074 0.080 0.075 0.067		$\begin{array}{r} 3s_{1/2} \\ 4s_{1/2} \\ 5s_{1/2} \\ 6s_{1/2} \\ 1p_{3/2} \end{array}$	$\begin{array}{c} 1p_{1/2} \\ 1p_{1/2} \\ 1p_{1/2} \\ 1p_{1/2} \\ 1p_{1/2} \\ 4d_{5/2} \end{array}$	$-0.118 \\ -0.821 \\ 0.250 \\ 0.116 \\ 0.144$	0.040 0.046 0.046 0.043 0.081	R A Broglia ^{1,2,7} , F Barranco ³ , A Idini ⁴ ®, G Potel ⁵ ® and E Vigezz	i
ע ע ע	$ \begin{array}{r} 1p_{3/2} \\ 1p_{3/2} \\ 1p_{3/2} \\ 1p_{3/2} \\ 1p_{3/2} \\ 1p_{3/2} \end{array} $	$\begin{array}{c} 4d_{5/2} \\ 5d_{5/2} \\ 6d_{5/2} \\ 7d_{5/2} \\ 8d \end{array}$	0.166 0.241 0.250 0.199	0.139 0.208 0.221 0.180	ע ע ע	$ \begin{array}{r} 1p_{3/2} \\ 1p_{3/2} \\ 1p_{3/2} \\ 1p_{3/2} \\ 1p_{3/2} \\ 1p_{3/2} \end{array} $	$\begin{array}{c} 4d_{5/2} \\ 5d_{5/2} \\ 6d_{5/2} \\ 7d_{5/2} \\ 8d \end{array}$	0.170 0.243 0.249 0.196 0.144	0.121 0.183 0.196 0.161	ע ע ע	$ \begin{array}{c} 1p_{3/2} \\ 1p_{3/2} \\ 1p_{3/2} \\ 1p_{3/2} \\ 1p_{3/2} \\ 1p_{3/2} \\ \end{array} $	$5d_{5/2}$ $6d_{5/2}$ $7d_{5/2}$ $8d_{5/2}$	0.201 0.201 0.156 0.113 0.126	0.125 0.135 0.112 0.085	2-quasiparticle neut	ron
ν ν ν ν ν ν ν π	$\begin{array}{c} 1p_{3/2} \\ 1p_{3/2} \\ 1p_{1/2} \\ 1p_{1/2} \\ 1p_{1/2} \\ 1p_{1/2} \\ 1p_{1/2} \\ 1p_{1/2} \\ 2s_{1/2} \\ \end{array}$	$8d_{5/2}$ $9d_{5/2}$ $4d_{3/2}$ $5d_{3/2}$ $6d_{3/2}$ $7d_{3/2}$ $8d_{3/2}$ $1p_{3/2}$	$\begin{array}{c} 0.148\\ 0.110\\ 0.103\\ 0.119\\ 0.128\\ 0.128\\ 0.117\\ -0.136\\ 0.005\\ 0$	$\begin{array}{c} 0.135\\ 0.102\\ 0.075\\ 0.095\\ 0.108\\ 0.112\\ 0.106\\ -0.131\end{array}$	ע ע ע ע ע	$\begin{array}{c} 1p_{3/2} \\ 1p_{3/2} \\ 1p_{1/2} \end{array}$	$8d_{5/2} 9d_{5/2} 2d_{3/2} 3d_{3/2} 4d_{3/2} 5d_{3/2} 6d_{3/2} 7d_{3/2} \\$	0.144 0.107 0.168 0.114 0.117 0.126 0.131 0.128	0.122 0.093 0.024 0.043 0.063 0.081 0.094 0.099	ν ν ν ν ν π	$\begin{array}{c} 1p_{1/2} \\ 1p_{3/2} \end{array}$	$9d_{3/2}$ $10d_{3/2}$ $11d_{3/2}$ $12d_{3/2}$ $13d_{3/2}$ $14d_{3/2}$ $1d_{5/2}$	$-0.126 \\ 0.187 \\ 0.121 \\ 0.113 \\ 0.111 \\ 0.104 \\ 0.245$	$\begin{array}{c} 0.014\\ 0.026\\ 0.040\\ 0.053\\ 0.064\\ 0.068\\ 0.210\\ \end{array}$		C oss a
π	$1p_{3/2}$	$1a_{5/2}$	0.337	0.322	$ u \\ \pi \\ \pi $	$1p_{1/2} \\ 2s_{1/2} \\ 1p_{3/2}$	$ba_{3/2} = 1p_{3/2} = 1d_{5/2}$	-0.130 0.322	-0.12 0.294							
the PDR exhausts about 8% of the EWSR

the PDR exhausts about 8% of the EWSR

dipole response function

the PDR has the structure of an elementary quantum vortex

Probing the ¹¹Li PDR with 2-neutron transfer

THE EUROPEAN

PHYSICAL JOURNAL A

DOI 10.1140/epja/i2019-127a9-y

Enr. Phys. J. A (2019) **55**: 243

Regular Article – Theoretical Physics

Characterization of vorticity in pygmy resonances and soft-dipole modes with two-nucleon transfer reactions^{*}

R.A. Broglia^{1,2}, F. Barranco³, G. Potel^{4,a}, and E. Vigezzi⁵

- we predict the population of the PDR with the 2-neutron transfer reaction
 ⁹Li(t,p)¹¹Li(PDR), with cross section σ=0.3mb
- shape of differential cross section very similar to that of the dipole response
- absolute value of cross section is a measure of the pp nature of the PDR

Probing the ¹¹Li PDR with 2-neutron transfer

THE EUROPEAN

PHYSICAL JOURNAL A

Ehr. Phys. J. A (2019) **55**: 243 DOI 10.1140/epja/i2019-12789-y

Regular Article – Theoretical Physics

Characterization of vorticity in pygmy resonances and soft-dipole modes with two-nucleon transfer reactions^{\star}

R.A. Broglia^{1,2}, F. Barranco³, G. Potel^{4,a}, and E. Vigezzi⁵

EUROPEAN ORGANIZATION FOR NUCLEAR RESEARCH

Probing the $^{11}\mathrm{Li}$ low-lying dipole strength via $^{9}\mathrm{Li}(t,p)$ with the ISS

Y. Ayyad¹, E. Vigezzi², G. Potel³, R. Broglia^{4,5}, B.P. Kay⁶,
A.O. Macchiavelli⁷, H. Alvarez-Pol⁸, F. Barranco⁹, D. Bazin^{1,10}, M. Caamaño⁸,
A. Ceulemans¹¹, J. Chen¹, H.L. Crawford⁷, B. Fernández-Domínguez⁸, S.J. Freeman¹²,
L.P. Gaffney¹³, C.R. Hoffman⁶, R. Kanungo¹⁴, C. Morse⁷, O. Poleshchuk¹¹, R. Raabe¹¹,
C.A. Santamaria⁷, D.K. Sharp¹², T. L. Tang⁶, K. Wimmer¹⁵, A.H. Wuosmaa¹⁶

experiment approved at ISOLDE facility (CERN). Spokepersons: Ayyad, Vigezzi

Conclusions

talks by Vandebrouck,

Spieker, Weinert,

Khumalo

- the PDR plays an important role in the structure of the exotic two-neutron halo nucleus ¹¹Li: halo-PDR symbiotic nature
- our calculations point to a strong *pp* component of the PDR, as opposed to the more *ph* nature of the GDR

- PDR of ¹¹Li as a vortical excitation of the halo. Extrapolable to neutron skins?
 Approved experiments: ¹¹Li(p,p')¹¹Li* @ FRIB, and ⁹Li(t,p)¹¹Li(PDR) @ ISOLDE
- along with (d,p) and (n,n'), (t,p) to join the ranks of novel probes to the PDR
- personal wish: (t,p) measurements on nuclei with neutron skin. Maybe with new FSU triton beam?

we compute the ¹¹Li PDR structure and the ⁹Li (*t*,*p*)¹¹Li(PDR) cross section

	3 representative low-lying dipole RPA peaks														valacity field of 208 Dh divale states	
E=0.65 MeV				E=1.21 MeV										velocity field of 200Pb dipole states		
	i	j	X_{ij}	Y _{ij}		i	0.0j	X _{ij}	Ý.;		 ij	···· l ····	X _{ij}	Y _{ij}	E _x =6.5-10.5 MeV E _x >10.5 MeV	
ſν	$2s_{1/2}$	$1p_{1/2}$	-0.780	0.078	ν	2s1/2	$1p_{1/2}$	-0.119	0.048	ν	$3s_{1/2}$	$1p_{1/2}$	-0.118	0.040	8	
ν	$-\frac{3s_{1/2}}{4s_{1/2}}$	$\frac{1p_{1/2}}{1p_{1/2}}$	0.479	0.108	ν	$\frac{3s_1}{2}$	$Ip_{1/2}$	-0.748	0.074	ν	$\frac{4s_{1/2}}{5s_{1/2}}$	$1p_{1/2}$	-0.821	0.046		
ν	$5s_{1/2}$	$1p_{1/2} \\ 1p_{1/2}$	0.144	0.093	v_{ν}	$-5s_{1/2}$	$\frac{1p_{1/2}}{1p_{1/2}}$	0.181	0.000		$DR6s_{1/2}$	$\frac{1}{1}p_{1/2}$	0 .230	0.040		
ν	$6s_{1/2}$	$1p_{1/2}$	0.106	0.080	ν	$6s_{k}$	$q_{p_{1/2}}$	0.117	0.067	ν	$1p_{3/2}$	$4d_{5/2}$	0.144	0.081		
νu	$1p_{3/2}$ $1p_{3/2}$	$4a_{5/2}$ $5d_{5/2}$	0.166	0.139	ν ν	$1p_{3/2}$ $1p_{3/2}$	$0.0^{4/2}_{5/2}_{5/2}$	0.170	0.121	v_{ν}	$\frac{1p_{3/2}}{1p_{3/2}}$	$5a_{5/2}$ $6d_{5/2}$	0.201	0.125		
ν	$1p_{3/2}$	$6d_{5/2}$	0.250	0.221	ν	$1p_{3/2}$	-6.4 ^{5/2}	0.249	0.196	ν	$1p_{3/2}$	$7d_{5/2}$	0.156	0.112		
ν ν	$1p_{3/2}$ $1p_{2/2}$	$7d_{5/2}$ $8d_{5/2}$	0.199 0.148	$0.180 \\ 0.135$	$\nu \nu$	$1p_{3/2}$ $1p_{2/2}$	$7d_{5/2}$ 8d=/2	0.196 0.144	0/161	ν	$1p_{3/2}$ $1p_{1/2}$	$8d_{5/2}$	0.113 - 0.126	0.085		
ν	$1p_{3/2}$	$9d_{5/2}$	0.110	0.102	ν	$1p_{3/2}$ $1p_{3/2}$	9 d 3 5	0.1007	0 .05 93	ν.	$1p_{1/2}$	$510d_{3/2}$	10 0.187 1	5 0.026		
ν	$1p_{1/2}$	$4d_{3/2}$	0.103	0.075	ν	$1p_{1/2}$	$2d_{3/2}$	0.168	A .2741	dist	ahlee2($fm_{3/2}$	0.121	0.040	ho (fm) $ ho$ (fm)	
V V	$1p_{1/2}$	$5d_{3/2}$	0.119	0.095	ν	$1p_{1/2}$ $1n_{1/2}$	$3d_{3/2}$	0.114	0.043	ν	$1p_{1/2}$	$12d_{3/2}$ $13d_{3/2}$	0.113	0.053		
ν	$\frac{1p_{1/2}}{1p_{1/2}}$	$7d_{3/2}$	0.128	0.112	ν	$\frac{1p_{1/2}}{1p_{1/2}}$	$5d_{3/2}$	0.126	0.005	ν	$\frac{1p_{1/2}}{1p_{1/2}}$	$13d_{3/2}$ $14d_{3/2}$	0.104	0.068	Ryezayeva <i>et di.</i> PRL 89 (2002) 272502	
ν	$1p_{1/2}$ $1p_{1/2}$	$8d_{3/2}$	0.117	0.106	ν	$1p_{1/2}$	$6d_{3/2}$	0.131	0.094	π	$1p_{3/2}$	$1d_{5/2}$	0.245	0.210		
π	$2s_{1/2}$	$1p_{3/2}$	-0.136	-0.131	ν	$1p_{1/2}$	$7d_{3/2}$	0.128	0.099		1 3/2	0/2				
π	$1p_{3/2}$	$1d_{5/2}$	0.337	0.322	ν	$1p_{1/2}$	$8d_{3/2}$	0.116	0.094							
					π	$2s_{1/2}$	$1p_{3/2}$	-0.130	-0.12							
					π	$1p_{3/2}$	$1d_{5/2}$	0.322	0.294							

Ground state of ¹¹Li

we compute the ¹¹Li PDR structure and the ⁹Li (*t*,*p*)¹¹Li(PDR) cross section

proposal to measure ⁹Li(*t*,*p*)¹¹Li(PDR) approved at ISOLDE

EUROPEAN ORGANIZATION FOR NUCLEAR RESEARCH

Probing the ¹¹Li low-lying dipole strength via ${}^{9}Li(t,p)$ with the ISS

September 22, 2020

Y. Ayyad¹, E. Vigezzi², G. Potel³, R. Broglia^{4,5}, B.P. Kay⁶,
A.O. Macchiavelli⁷, H. Alvarez-Pol⁸, F. Barranco⁹, D. Bazin^{1,10}, M. Caamaño⁸,
A. Ceulemans¹¹, J. Chen¹, H.L. Crawford⁷, B. Fernández-Domínguez⁸, S.J. Freeman¹²,
L.P. Gaffney¹³, C.R. Hoffman⁶, R. Kanungo¹⁴, C. Morse⁷, O .Poleshchuk¹¹, R. Raabe¹¹,
C.A. Santamaria⁷, D.K. Sharp¹², T. L. Tang⁶, K .Wimmer¹⁵, A.H. Wuosmaa¹⁶

the structure of the PDR can be addressed with different probes

Vandebrouck talk

Savran 2018

Inelastic excitation and two-nucleon transfer populate the same states

Two neutron transfer, a novel probe for the PDR?

Low-lying dipole strength

Full dipole strength

Deformations in 3D space and in gauge space

NFT

¹¹Li summary

Role of ground state correlations

Transition to the first 1/2⁻ (2.69 MeV) excited state of ⁹Li

From 9Li to ¹⁰Li...

... and from $^{10}\mbox{Li}$ to $^{11}\mbox{Li}$

¹¹Li=⁹Li core+2-neutron halo (single Cooper pair). According to Barranco *et al.* (2001), the two neutrons correlate by means of the bare interaction (accounting for $\approx 20\%$ of the ¹¹Li binding energy) and by exchanging 1⁻ and 2⁺ phonons ($\approx 80\%$ of the binding energy)

Within this model, the ^{11}Li wavefunction can be written as

$$egin{aligned} | ilde{0}
angle &= 0.45 |s_{1/2}^2(0)
angle + 0.55 |p_{1/2}^2(0)
angle + 0.04 |d_{5/2}^2(0)
angle \ &+ 0.70 |(ps)_{1^-} \otimes 1^-; 0
angle + 0.10 |(sd)_{2^+} \otimes 2^+; 0
angle. \end{aligned}$$

Note that the $p_{3/2}$ proton doesn't play any role and is not taken into account.

Schematic depiction of ¹¹Li

First excited state of ⁹Li

Spontaneous symmetry breaking in nuclei

