Neutron-Capture Constraints from the Oslo and Surrogate Methods via Triton Induced Reactions

Prof. Andrea Richard Ohio University richarda1@ohio.edu

Triton Workshop, FSU March 14, 2024

- Reaction networks:
 - Astrophysics
 - Stockpile stewardship
 - Non-proliferation
 - Nuclear Energy
 - •

Current Measurements

How do you obtain (n, y) rates for an isotope?

A*

Direct Measurement

• Desired targets are too short-lived

n

A-1

- No feasible neutron target
- Not possible for rare isotopes

Indirect Measurement

 Access same nucleus through different pathway

> Examples: Oslo Method β-Oslo Method Surrogate Method Inverse Oslo Method γ-ray strength method

A. Spyrou *et al.*, PRL **113**, 232502 (2014)
J. Escher *et al.*, PRL **121**, 052501 (2018)
A. Ratkiewicz *et al.*, PRL **122**, 052502 (2019)
H. Utsunomiya *et al.*, PRC **82**, 064610 (2010)
M. Guttormsen *et al.*, NIMA **255**, 518 (1987)
M. Guttormsen *et al.*, NIMA **374**, 371 (1996)
A. Schiller *et al.*, NIMA **447**, 498 (2000)
A.C. Larsen *et al.*, PRC **83**, 034315 (2011)
V. Ingeberg *et al.*, PRC **106**, 054315 (2022)

Theoretical (n,y) cross section calculations have large uncertainties

Hauser – Feshbach (Statistical Model)

- Nuclear Level Density (NLD)
- γ-ray strength function (γSF)

Optical model potential

Dominate uncertainties

Large uncertainties further from stability

A.C. Larsen, *et al.* PPNP **107** 69 (2019). Koning and Rochman, Nucl. Data Sheets **113**, 2841 (2012) Hauser and Feshbach, Phys. Rev. **87**, 366 (1952)

Indirect Techniques are Used to Constrain (n,y) Rates

Probe/measure level density, γ -ray strength function \Rightarrow Constrain (n, γ) cross section!

Indirect Techniques are used to constrain (n,γ) rates: Oslo Method

(A, Z

Populate the compound

nucleus via mechanism of

measurement of NLD and

✓ Charged particle detector

✓ Gamma array (Nal, LaBr₃,

✓ > 30,000 particle-gamma

✓ Resolution vs. Efficiency

A. L. Richard, Triton Workshop

7

Feasible with beam

intensities $> 10^6$ pps

Simultaneous

choice

gSF

Needs:

CeBr₃, ...)

coincidences

F. Zeiser, et al. NIMA 985 164678 (2021)

Oslo Method Analysis

Raw Matrix

- Purely experimental data from SiRi (protons) and CACTUS (gammas)
- Investigate structure of ⁵¹Ti

Oslo Method Analysis

Raw Matrix

- Purely experimental data from SiRi (protons) and CACTUS (gammas)
- Investigate structure of ⁵¹Ti

Unfolded Matrix

- Need to account for the interaction of γ-rays in the detector
- Generate response function for CACTUS in GEANT4
- Iterative procedure to determine the incoming energy

Guttormsen et al., NIMA **255**, 518 (1987) Allison et al., NIMA **835**, 186 (2016) Schiller et al., NIMA **47**, 498 (2000) Guttormsen et al., NIMA **374**, 371 (1996) S. N. Liddick, et al. PRC **100**, 024624 (2019)

Oslo Method Analysis

Normalizations

- Discrete levels from NNDC
- Level density at S_n from neutron resonance spacing (D₀)
- Average radiative width (Γ_γ)
- Spin distribution and cutoff

First Generation Matrix

- Isolate the first γ-ray to be emitted from each excited state
- Iterative subtraction of the γ-rays emitted from lower excited states
- Becomes the probability matrix needed to extract NLD and γSF

Guttormsen et al., NIMA **255**, 518 (1987) Allison et al., NIMA **835**, 186 (2016) Schiller et al., NIMA **47**, 498 (2000) Guttormsen et al., NIMA **374**, 371 (1996) S. N. Liddick, et al. PRC **100**, 024624 (2019)

Oslo Method for ⁴⁶Ti(p,ty)⁴⁴T

- Experiment at OCL
 - 32-MeV proton beam

** not for (n,γ) constraint

- Self-supporting ⁴⁶Ti target (3.0 mg/cm²)
- ΔE -E telescopes + NaI (CACTUS)

The Shape Method

Extraction of slope of NLD and gSF without D₀ values

M. Wiedeking, et al., Phys. Rev. C 104, 014311 (2021)

Indirect Techniques are used to constrain (n,γ) rates: Surrogate Reaction Method

(Some) Experimental Setups for Surrogate Reactions

Highly Segmented Silicon Arrays and High-resolution HPGe arrays

A. L. Richard, Triton Workshop 14

The Surrogate Reaction Method

Livermore

boratorv

Surrogate Method: ⁹⁵Mo(d,pγ)⁹⁶Mo

Measurement of ⁹⁵Mo(d,pγ) in normal kinematics at TAMU

Surrogate Method: ⁹⁵Mo(d,pγ)⁹⁶Mo

Experimental coincidence probability

Surrogate Method: ⁹⁵Mo(d,pγ)⁹⁶Mo

Current plans: ¹⁸⁰Hf(t,pγ)¹⁸²Hf

Measure p-γ coincidences (> 30k)

Oslo (& Shape) Method Analysis

- Constrain NLD and gSF of ¹⁸²Hf (Nuclear Structure) and ¹⁸¹Hf(n,γ)¹⁸²Hf reaction rate (Nuclear Astrophysics)
- Fully funded project with LLNL Team (+ OhioU)
 - Recently hired a postdoc!
- Hf beams at RIB facilities not feasible at this time.

Current plans: ¹⁸⁰Hf(t,pγ)¹⁸²Hf

.aboratory

Current plans: ¹⁸⁰Hf(t,pγ)¹⁸²Hf

- Time interval that elapsed between stellar additions (Hf) and formation of the Sun requires us to know how much radioactive nuclei were present at both times
 - Well known for Sun based on meteorites
 - Not known for final addition of elements and relies on models with large uncertainties

Cosmochronometer dating tells time on cosmic scales

- Very similar to the idea of Carbon Dating (~5,700 years), but much longer time scale and nuclear reactions rates are needed too
- ¹⁸²Hf is the perfect cosmochronometer it lives for 8.9 million years
 - <u>No nuclear data to describe how ¹⁸²Hf is</u> produced so there are large uncertainties!
 - Measure ¹⁸²Hf production!

- Excitation energy and gamma-ray energy range: 0 6.8 MeV (S_n)
- Tritium beam energies & current: ~ 15 MeV, >1-3 nA
- Target from CATS: ~100 μ g/cm2 ¹⁸⁰Hf (C backing)

Expected Outcome: ¹⁸⁰Hf(t,pγ)¹⁸²Hf

Future measurements

- Further (t,p) studies
 - Two steps from stability
 - s-process, weak *i*-process, applications
 - ¹⁰²Ru(t,p), ¹⁷⁶Yb(t,p), ¹⁶⁹Tm(t,p), ²³⁸U(t,p), ...
 - Extension to Surrogate Reaction measurements coupled with development of (t,p) surrogate theory
- (t,³He) of interest!

Summary and Outlook

- Neutron-capture cross sections are important for basic needs, astrophysics, and applications
- Indirect reactions are needed for constraining (n,γ) reactions
- The Oslo Method is currently feasible for (t,p) and (t,³He) studies
- Surrogate studies are on the horizon!
- ¹⁸⁰Hf(t,pγ)¹⁸²Hf cosmochronometer study will allow us to understand the timeline for solar system formation
- Lots of exciting research to do with triton beams! ^(C)

Thank you!

Questions?

?

?