

Charge-Exchange Reactions with Triton Beams

Remco G.T. Zegers

This work is primarily supported by the US National Science Foundation through grant nos. PHY-1913554 and MICHIGAN STATE PHY-2209429, but also benefits from support from the US DOE Office of Science and funding support from RSIT E international collaborators

Outline

- (t,³He) experiments at ~115 MeV/u using a secondary triton beam
- Isovector response and the extraction of weak interaction strengths
- Properties of the NN interaction and the description of the (t,³He) reaction as a function of beam energy
- Opportunities for (t,³He) experiments at low beam energies

Producing a triton beam for $(t, {}^{3}He)$ experiments

Thin wedge is needed to remove ⁶He (⁹Li) Background channel ⁶He->³He + 3n

Efforts at RIKEN: Miki et al., PRL 108, 262503 (2012) ³H rate ~10⁷ pps at 300 MeV/u

G.W. Hitt Nucl. Instr. and Meth. A 566 (2006), 264.

(t,³He), (t,³He+ γ), (t,³He+n) S800 Spectrograph (+Gretina)

Charge-exchange reactions with unstable beams at NSCL

(t,³He) at 43 MeV/u with a primary triton beam

- AGOR Cyclotron at KVI
- Tritons extracted from deuterium gas (tritons~22 ppm)
- Tuning of beam lines with ³He¹⁺ ions
- Tritium beam intensity of 4x10⁷ pps
- ³He detected in Big Bite Spectrometer with resolution: 350 keV (comparable to resolution at NSCL with secondary beam)

The isovector response of nuclei

- Since the $(t, {}^{3}He)$ reaction requires $\Delta T_{z} = +1, \Delta T = 1$
- Reaction populates states with T_o+I (T_o isospin of target)
- Populated states have analogs in the $\Delta T_z = 0$ and -1 direction, but difficult to disentangle

nature is kind: nuclear charge-exchange reactions as a probe of weak transition strengths

- Charge-exchange reactions connect the same initial and final states as in weak interactions and are mediated through similar spin and isospin transfer operators
- Proportionality holds at ~10% level beam energies must be ~100 MeV/A or above
- Applied to a variety of CE probes: (p,n)/(n,p), (³He,t)/(t,³He),(d,²He),(⁷Li,⁷Be) etc.
- $\hat{\sigma}$ is calibrated with a transition for which B(GT) is know from β decay half-life measurement

Gamow-Teller strengths and CE cross sections

Unlike β -decay CE experiments do not suffer from Q-value restrictions

Extraction of GT strength

C. Guess et al., Phys. Rev. C 80, 024305 (2009)

Extraction of Gamow-Teller strengths

Proportionality between strength and cross section requires that the differential cross section at small momentum transfers ($q \approx 0$) can be factorized in simple terms:

 $\sigma(q \approx 0) = K ||_{\sigma\tau}|^2 N F(q, E_x) B(GT)$

K: kinematic factor

 $J_{\sigma\tau} : \mbox{Amplitude of the } \sigma\tau \mbox{ component of the NN interaction} \\ N: \mbox{Distortion factor (Eikonal treatment of distortion of incoming} \\ \mbox{and outgoing waves} \end{cases}$

F(q,E_x): correction of dependence of σ on q and E_x B(GT): Gamow-Teller Strength

The (p,n) reaction as a probe of beta decay strength, T.N. Taddeucci et al., Nucl. Phys. A469, (1987)

11

Gamow-Teller Unit cross section for (³He,t) and (t,³He) at 115-140 MeV/u

The unit cross section has a simple dependence on mass number for A=6 and above.

Empirical determination allows for the extraction of GT strength even if no calibration from β /EC is available for a specific nucleus

 $=\hat{\sigma}B(GT)$ unit cross section \hat{G}_{GT} $\hat{\sigma}_{exp}(^{3}\text{He,t}) - 140\text{A MeV}$ $\hat{\sigma}_{\rm avp}(t,^{3}\text{He}) - 115\text{A MeV}$ 10^{2} 10 target massnumber (A)

R.Z. et al., Phys. Rev. Lett. 99, 202501 (2007) G. Perdikakis et al., Phys. Rev. C 83, 054614 (2011) ⁵⁶Fe(t,³He)

Result from multipole decompositions analysis

Experiment

⁵⁶Fe(t,³He) - M. Scott et al., PRC 90, 025801 (2014) ⁵⁶Fe(n,p) - S. El-Kateb et al., PRC 49, 3128 (1994)

Theory – Shell model KB3G - A. Poves et al., NPA694, 157 (2001) GXPF1a - M. Honma et al. PRC 65, 061301(R) (2002) Theory – QRPA Used in astrophysical modelling P. Moller and J. Randrup, NPA514, 1 (1990); S. Gupta

Systematic EC rate comparisons

Systemic comparison of EC rates calculated from theory and derived from data provide framework for error estimation of theoretical rates

(d,²He) data – KVI, the Netherlands (t,³He) data – NSCL/MSU (p,n) data IUCF/NSCL (isospin symmetry)

Systematic studies provide a way to benchmark and improve theoretical calculations

Experimental results from different facilities and probes are combined to perform comprehensive comparisons

Properties of the NN interaction

The NN interaction commonly used in DWBA/ DWIA calculations for CE (and inelastic) reactions is the Love-Franey^{1,2} interaction

- Determined from NN scattering data as a function of energy
 - 50 MeV/u, 100 MeV/u, 140 MeV/u, 175 MeV/u and higher in original papers
 - 10 MeV/u, 20 MeV/u, 30 MeV/u, 40 MeV/u, 50 MeV/u: New (Horst Lenske³)
- Easily separable in different components of the NN interaction
- Central complex terms: V_0 , $V_{\sigma\tau}$, V_{τ} , V_{σ}
- Non-central complex terms: tensor and spin-orbit terms
- Each term consists of several Yukawa potentials with different ranges representing different types of meson-exchanges
- Direct and exchange contributions are included

¹W. G. Love and M.A. Franey, Phys. Rev. C 24, 1073 (1981)

² M.A. Franey and W. G. Love, Phys. Rev. C 31, 488 (1985)

³ F. Cappuzzello, H. Lenske et al., Progress in Particle and Nuclear Physics 128, 103999 (2023); H. Lenske, priv. comm.

Above ~50 MeV/u, the response is dominated by central terms of the NN interaction

- Reaction mechanism relatively simple
- Energy dependence of excitations well-reproduced

(t,³He) reactions

- For (t,³He) (and other composite-ion CE) reactions at intermediate energies a reaction code is available: FOLD¹
- Form factor is calculated by double-folding the Love-Franey NN interaction over the transition densities of the target-residue and projectile-ejectile systems
- ³He and ³H densities from Variational Monte-Carlo simulations²
- Microscopic inputs from shell-models, DFT, etc.
- Accurate angular distributions (at forward scattering angles), but calculated cross sections tend to be too high, due to approximate short-range treatment of exchange amplitudes that interfere with the direct amplitudes
- Alternative code is available (DCP2³) that treats exchange exactly, but quite difficult to use

¹J. Cook and J.A. Carr, computer program FOLD, Florida State University (unpublished), based on F. Petrovich and D. Stanley, Nucl. Phys. A 275 (1977) 487, modified as described in J. Cook *et al.*, Phys. Rev. 30 (1984) 1538 and R.G.T. Zegers, S. Fracasso and G. Colo, 2006 (unpublished). ² S. C. Pieper and R. B. Wiringa, Annu. Rev. Nucl. Part. Sci. 51, 53 (2001), and R.B. Wiringa, private communication. ³ T. Udagawa, A. Schulte and F. Osterfeld, Nuclear Physics, A474 (1987) 131-154, and B.T. Kim, H. Sakai, private communication

Proportionality at lower energies is broken

⁵⁸Ni(t,³He) at 25 MeV Ajzenberg-Selove et al., PRC 30, 1850 (1984)

Ex(⁵⁸ Co)	Strength Relative to state at 1868 KeV	
(keV)	(t,³He) at 25 MeV	(d,²He) at 170 MeV
1050	0.56	0.21
1435	0.08	0.13
1729	0.55	0.22
1868	1.00	1.00
2249	0.13	0.07

⁵⁸Ni(d,²He) at 170 MeV Hagemann et al., PLB 579, 251 (2004) (consistent with ⁵⁸Ni(t,³He) at 345 MeV Cole et al., PRC 74, 034333 (2006)

At lower energies, a lot of detailed spectroscopic information can be obtained

Access to high spin states

Comparison with Coupled-Channels Born Approximation Including:

- (t,α) - $(\alpha, {}^{3}\text{He})$ (dominant)
- (t,d)-(d,³He)

Ajzenberg-Selove et al., PRC 31, 777 (1985)

A hybrid approach – (³He,t) reaction studies at E_{3He} =30-80 MeV

- First developed by R. Schaeffer et al., Nucl. Phys. A164, 145 (1975) for (³He,t) at E_{3He}=30 MeV
- Detailed development at E_{3He}~80 MeV Van Der Werf et al., Nucl. Phys.A 496, 305 (1989)
- Used also for E_{3He}~200 MeV (IUCF, KVI)

Method assumes a single step calculation with an effective interaction that has similar terms as the Love-Franey interaction, but single Yukawa potentials are assumed.

$$V_{\text{eff}} = \{ V_{\tau} Y(r/R_{\text{c}}) + V_{\sigma\tau}(\boldsymbol{\sigma}_{1} \cdot \boldsymbol{\sigma}_{2}) Y(r/R_{\text{c}}) + V_{Ls\tau}(\boldsymbol{L} \cdot \boldsymbol{S}) Y(r/R_{Ls\tau}) + V_{T\tau} r^{2} S_{12} Y(r/R_{T\tau}) \} (\boldsymbol{\tau}_{1} \cdot \boldsymbol{\tau}_{2})$$

A hybrid approach – (³He,t) reaction studies at E_{3He} =30-80 MeV

 $V_{\text{eff}} = \{ V_{\tau} Y(r/R_{\text{c}}) + V_{\sigma\tau}(\boldsymbol{\sigma}_{1} \cdot \boldsymbol{\sigma}_{2}) Y(r/R_{\text{c}}) + V_{Ls\tau}(\boldsymbol{L} \cdot \boldsymbol{S}) Y(r/R_{Ls\tau}) + V_{T\tau} r^{2} S_{12} Y(r/R_{T\tau}) \} (\boldsymbol{\tau}_{1} \cdot \boldsymbol{\tau}_{2})$

- Only direct terms are included amplitudes of the potentials account for exchange effects
- Two-step interactions are ignored, but were shown to not drastically change the angular distributions, so these would affect the amplitudes of the potentials
- The effective force used for the ³He-n system has a bound state for S=T=0, so the two-step process (³He, α)-(α ,t) is effectively taken into account
- Code available: DW81

A hybrid approach – (³He,t) reaction studies at E_{3He} =30-80 MeV

R. Schaeffer et al., - Nucl. Phys. A164, 145 (1975) for (3 He,t) at E_{3He} =30 MeV

E_{3He}~80 MeV – Van Der Werf et al., Nucl. Phys. A 496, 305 (1989)

Opportunities for (t,³He) at low beam energies

- Detailed spectroscopy that is complementary to experiments at high beam energies
- Superior experimental tools compared to previous experiments with low-energy triton beams are now available
- Access to states with low and high spins
- Reaction codes exists that appear to be effective in identifying spins from angular distributions
 - Coupled channel code
 - Hybrid code based on effective interaction (DW81)
 - Might want to investigate calculations with full NN interaction newly developed down to beam energies of 10 MeV/u? (FOLD)

Thank you!